Cannot convert list to array: ValueError: only one element tensors can be converted to Python scalars

Henning picture Henning · Aug 29, 2018 · Viewed 40k times · Source

I'm currently working with the PyTorch framework and trying to understand foreign code. I got an indices issue and wanted to print the shape of a list.
The only way of doing so (as far as Google tells me) is to convert the list into a numpy array and then getting the shape with numpy.ndarray.shape().

But trying to convert my list into an array, I got a ValueError: only one element tensors can be converted to Python scalars.

My List is a converted PyTorch Tensor (list(pytorchTensor)) and looks somewhat like this:

[tensor([[-0.2781, -0.2567, -0.2353, ..., -0.9640, -0.9855, -1.0069],
[-0.2781, -0.2567, -0.2353, ..., -1.0069, -1.0283, -1.0927],
[-0.2567, -0.2567, -0.2138, ..., -1.0712, -1.1141, -1.1784],
...,
[-0.6640, -0.6425, -0.6211, ..., -1.0712, -1.1141, -1.0927],
[-0.6640, -0.6425, -0.5997, ..., -0.9426, -0.9640, -0.9640],
[-0.6640, -0.6425, -0.5997, ..., -0.9640, -0.9426, -0.9426]]), tensor([[-0.0769, -0.0980, -0.076 9, ..., -0.9388, -0.9598, -0.9808],
[-0.0559, -0.0769, -0.0980, ..., -0.9598, -1.0018, -1.0228],
[-0.0559, -0.0769, -0.0769, ..., -1.0228, -1.0439, -1.0859],
...,
[-0.4973, -0.4973, -0.4973, ..., -1.0018, -1.0439, -1.0228],
[-0.4973, -0.4973, -0.4973, ..., -0.8757, -0.9177, -0.9177],
[-0.4973, -0.4973, -0.4973, ..., -0.9177, -0.8967, -0.8967]]), tensor([[-0.1313, -0.1313, -0.110 0, ..., -0.8115, -0.8328, -0.8753],
[-0.1313, -0.1525, -0.1313, ..., -0.8541, -0.8966, -0.9391],
[-0.1100, -0.1313, -0.1100, ..., -0.9391, -0.9816, -1.0666],
...,
[-0.4502, -0.4714, -0.4502, ..., -0.8966, -0.8966, -0.8966],
[-0.4502, -0.4714, -0.4502, ..., -0.8115, -0.8115, -0.7903],
[-0.4502, -0.4714, -0.4502, ..., -0.8115, -0.7690, -0.7690]])]

Is there a way of getting the shape of that list without converting it into a numpy array?

Answer

Shai picture Shai · Aug 29, 2018

It seems like you have a list of tensors. For each tensor you can see its size() (no need to convert to list/numpy). If you insist, you can convert a tensor to numpy array using numpy():

Return a list of tensor shapes:

>> [t.size() for t in my_list_of_tensors]

Returns a list of numpy arrays:

>> [t.numpy() for t in my_list_of_tensors]

In terms of performance, it is always best to avoid casting of tensors into numpy arrays, as it may incur sync of device/host memory. If you only need to check the shape of a tensor, use size() function.