How to implement Merge from Keras.layers

Raj Dayal picture Raj Dayal · Jun 28, 2018 · Viewed 22.5k times · Source

I have been trying to merge the following sequential models but haven't been able to. Could somebody please point out my mistake, thank you.

The code compiles while using"merge" but give the following error "TypeError: 'module' object is not callable" However it doesn't even compile while using "Merge"

I am using keras version 2.2.0 and python 3.6

from keras.layers import merge
def linear_model_combined(optimizer='Adadelta'):    
    modela = Sequential()
    modela.add(Flatten(input_shape=(100, 34)))
    modela.add(Dense(1024))
    modela.add(Activation('relu'))
    modela.add(Dense(512))

    modelb = Sequential()
    modelb.add(Flatten(input_shape=(100, 34)))
    modelb.add(Dense(1024))
    modelb.add(Activation('relu'))
    modelb.add(Dense(512))

    model_combined = Sequential()

    model_combined.add(Merge([modela, modelb], mode='concat'))

    model_combined.add(Activation('relu'))
    model_combined.add(Dense(256))
    model_combined.add(Activation('relu'))

    model_combined.add(Dense(4))
    model_combined.add(Activation('softmax'))

    model_combined.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

    return model_combined

Answer

Daniel GL picture Daniel GL · Jun 28, 2018

Merge cannot be used with a sequential model. In a sequential model, layers can only have one input and one output. You have to use the functional API, something like this. I assumed you use the same input layer for modela and modelb, but you could create another Input() if it is not the case and give both of them as input to the model.

def linear_model_combined(optimizer='Adadelta'):    

    # declare input
    inlayer =Input(shape=(100, 34))
    flatten = Flatten()(inlayer)

    modela = Dense(1024)(flatten)
    modela = Activation('relu')(modela)
    modela = Dense(512)(modela)

    modelb = Dense(1024)(flatten)
    modelb = Activation('relu')(modelb)
    modelb = Dense(512)(modelb)

    model_concat = concatenate([modela, modelb])


    model_concat = Activation('relu')(model_concat)
    model_concat = Dense(256)(model_concat)
    model_concat = Activation('relu')(model_concat)

    model_concat = Dense(4)(model_concat)
    model_concat = Activation('softmax')(model_concat)

    model_combined = Model(inputs=inlayer,outputs=model_concat)

    model_combined.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

    return model_combined