I have a data frame where most of the columns are varchar/object type. Length of the column varies a lot and could be anything within the range of 3 - 1000+ . Now, for each column, I want to measure maximum length.
I know how to calculate maximum length for a col. If its varchar then:
max(df.char_col.apply(len))
and if its number (float8 or int64) then:
max(df.num_col.map(str).apply(len))
But my dataframe has hundreds of column and I want to calculate maximum length for all columns at the same time. The problem for that is, there are different data types, and I dont know how to do all at once.
So Question 1: How to get maximum column length for each columns in the data frame
Now I am trying to do that only for varchar/object type columns using following code:
xx = df.select_dtypes(include = ['object'])
for col in [xx.columns.values]:
maxlength = [max(xx.col.apply(len))]
I selected only object type columns and tried to write a for loop. But its not working. probably using apply() within for loop is not a good idea.
Question 2: How to get maximum length of each column for only object type columns
Sample data frame:
d1 = {'name': ['john', 'tom', 'bob', 'rock', 'jimy'], 'DoB': ['01/02/2010', '01/02/2012', '11/22/2014', '11/22/2014', '09/25/2016'], 'Address': ['NY', 'NJ', 'PA', 'NY', 'CA'], 'comment1': ['Very good performance', 'N/A', 'Need to work hard', 'No Comment', 'Not satisfactory'], 'comment2': ['good', 'Meets Expectation', 'N', 'N/A', 'Incompetence']}
df1 = pd.DataFrame(data = d1)
df1['month'] = pd.DatetimeIndex(df1['DoB']).month
df1['year'] = pd.DatetimeIndex(df1['DoB']).year
One solution is to use numpy.vectorize
. This may be more efficient than pandas
-based solutions.
You can use pd.DataFrame.select_dtypes
to select object
columns.
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': ['abc', 'de', 'abcd'],
'B': ['a', 'abcde', 'abc'],
'C': [1, 2.5, 1.5]})
measurer = np.vectorize(len)
Max length for all columns
res1 = measurer(df.values.astype(str)).max(axis=0)
array([4, 5, 3])
Max length for object columns
res2 = measurer(df.select_dtypes(include=[object]).values.astype(str)).max(axis=0)
array([4, 5])
Or if you need output as a dictionary:
res1 = dict(zip(df, measurer(df.values.astype(str)).max(axis=0)))
{'A': 4, 'B': 5, 'C': 3}
df_object = df.select_dtypes(include=[object])
res2 = dict(zip(df_object, measurer(df_object.values.astype(str)).max(axis=0)))
{'A': 4, 'B': 5}