I recieve this error while trying to obtain the recall score.
X_test = test_pos_vec + test_neg_vec
Y_test = ["pos"] * len(test_pos_vec) + ["neg"] * len(test_neg_vec)
recall_average = recall_score(Y_test, y_predict, average="binary")
print(recall_average)
This will give me:
C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:1030: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
if pos_label not in present_labels:
Traceback (most recent call last):
File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>
main()
File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main
evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)
File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model
recall_average = recall_score(Y_test, y_predict, average="binary")
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score
sample_weight=sample_weight)
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1036, in precision_recall_fscore_support
(pos_label, present_labels))
ValueError: pos_label=1 is not a valid label: array(['neg', 'pos'],
dtype='<U3')
I tried to transform 'pos' in 1 and 'neg' in 0 this way:
for i in range(len(Y_test)):
if 'neg' in Y_test[i]:
Y_test[i] = 0
else:
Y_test[i] = 1
But this is giving me another error:
C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:181: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
score = y_true == y_pred
Traceback (most recent call last):
File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>
main()
File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main
evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)
File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model
recall_average = recall_score(Y_test, y_predict, average="binary")
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score
sample_weight=sample_weight)
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1026, in precision_recall_fscore_support
present_labels = unique_labels(y_true, y_pred)
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\utils\multiclass.py", line 103, in unique_labels
raise ValueError("Mix of label input types (string and number)")
ValueError: Mix of label input types (string and number)
What I am trying to do is to obtain the metrics: accuracy, precision, recall, f_measure. With average='weighted'
, I obtain the same result: accuracy=recall. I guess this is not correct, so I changed the average='binary'
, but I have those errors. Any ideas?
recall_average = recall_score(Y_test, y_predict, average="binary", pos_label="neg")
Use "neg"
or "pos"
as pos_label
and this error won't raise again.