Let's assume we have a bunch of links to download and each of the link may take a different amount of time to download. And I'm allowed to download using utmost 3 connections only. Now, I want to ensure that I do this efficiently using asyncio.
Here's what I'm trying to achieve: At any point in time, try to ensure that I have atleast 3 downloads running.
Connection 1: 1---------7---9---
Connection 2: 2---4----6-----
Connection 3: 3-----5---8-----
The numbers represent the download links, while hyphens represent Waiting for download.
Here is the code that I'm using right now
from random import randint
import asyncio
count = 0
async def download(code, permit_download, no_concurrent, downloading_event):
global count
downloading_event.set()
wait_time = randint(1, 3)
print('downloading {} will take {} second(s)'.format(code, wait_time))
await asyncio.sleep(wait_time) # I/O, context will switch to main function
print('downloaded {}'.format(code))
count -= 1
if count < no_concurrent and not permit_download.is_set():
permit_download.set()
async def main(loop):
global count
permit_download = asyncio.Event()
permit_download.set()
downloading_event = asyncio.Event()
no_concurrent = 3
i = 0
while i < 9:
if permit_download.is_set():
count += 1
if count >= no_concurrent:
permit_download.clear()
loop.create_task(download(i, permit_download, no_concurrent, downloading_event))
await downloading_event.wait() # To force context to switch to download function
downloading_event.clear()
i += 1
else:
await permit_download.wait()
await asyncio.sleep(9)
if __name__ == '__main__':
loop = asyncio.get_event_loop()
try:
loop.run_until_complete(main(loop))
finally:
loop.close()
And the output is as expected:
downloading 0 will take 2 second(s)
downloading 1 will take 3 second(s)
downloading 2 will take 1 second(s)
downloaded 2
downloading 3 will take 2 second(s)
downloaded 0
downloading 4 will take 3 second(s)
downloaded 1
downloaded 3
downloading 5 will take 2 second(s)
downloading 6 will take 2 second(s)
downloaded 5
downloaded 6
downloaded 4
downloading 7 will take 1 second(s)
downloading 8 will take 1 second(s)
downloaded 7
downloaded 8
But here are my questions:
At the moment, I'm simply waiting for 9 seconds to keep the main function running till the downloads are complete. Is there an efficient way of waiting for the last download to complete before exiting the main function? (I know there's asyncio.wait, but I'll need to store all the task references for it to work)
What's a good library that does this kind of task? I know javascript has a lot of async libraries, but what about Python?
Edit: 2. What's a good library that takes care of common async patterns? (Something like https://www.npmjs.com/package/async)
If I'm not mistaken you're searching for asyncio.Semaphore. Example of usage:
import asyncio
from random import randint
async def download(code):
wait_time = randint(1, 3)
print('downloading {} will take {} second(s)'.format(code, wait_time))
await asyncio.sleep(wait_time) # I/O, context will switch to main function
print('downloaded {}'.format(code))
sem = asyncio.Semaphore(3)
async def safe_download(i):
async with sem: # semaphore limits num of simultaneous downloads
return await download(i)
async def main():
tasks = [
asyncio.ensure_future(safe_download(i)) # creating task starts coroutine
for i
in range(9)
]
await asyncio.gather(*tasks) # await moment all downloads done
if __name__ == '__main__':
loop = asyncio.get_event_loop()
try:
loop.run_until_complete(main())
finally:
loop.run_until_complete(loop.shutdown_asyncgens())
loop.close()
Output:
downloading 0 will take 3 second(s)
downloading 1 will take 3 second(s)
downloading 2 will take 1 second(s)
downloaded 2
downloading 3 will take 3 second(s)
downloaded 1
downloaded 0
downloading 4 will take 2 second(s)
downloading 5 will take 1 second(s)
downloaded 5
downloaded 3
downloading 6 will take 3 second(s)
downloading 7 will take 1 second(s)
downloaded 4
downloading 8 will take 2 second(s)
downloaded 7
downloaded 8
downloaded 6
Example of async downloading with aiohttp
can be found here.