so I'm new to python and ran into a problem using pytrends. I'm trying to compare 5 search terms and store the sum in a CSV.
The problem I'm having right now is I can't seem to isolate an individual element returned. I have the data, I can see it, but I can't seem to isolate an element to be able to do anything meaningful with it.
I found elsewhere a suggestion to use iloc, but that doesn't return anything for what's shown, and if I pass only one parameter it seems to display everything.
It feels really dumb, but I just can't figure this out, nor can I find anything online.
from pytrends.request import TrendReq
import csv
import pandas
import numpy
import time
# Login to Google. Only need to run this once, the rest of requests will use the same session.
pytrend = TrendReq(hl='en-US', tz=360)
with open('database.csv',"r") as f:
reader = csv.reader(f,delimiter = ",")
data = list(reader)
row_count = len(data)
comparator_string = data[1][0] + " opening"
print("comparator: ",comparator_string,"\n")
#Initialize search term list including comparator_string as the first item, plus 4 search terms
kw_list=[]
kw_list.append(comparator_string)
for x in range(1, 5, 1):
search_string = data[x][0] + " opening"
kw_list.append(search_string)
# Create payload and capture API tokens. Only needed for interest_over_time(), interest_by_region() & related_queries()
pytrend.build_payload(kw_list, cat=0, timeframe='today 3-m',geo='',gprop='')
# Interest Over Time
interest_over_time_df = pytrend.interest_over_time()
#time.sleep(randint(5, 10))
#printer = interest_over_time_df.sum()
printer = interest_over_time_df.iloc[1,1]
print("printer: \n",printer)
pytrends returns pandas.DataFrame
objects, and there are a number of ways to go about indexing and selecting data.
Let's take this following bit of code, for example:
kw_list = ['apples', 'oranges', 'bananas']
interest_over_time_df = pytrend.interest_over_time()
If you run print(interest_over_time_df)
you will see something like this:
apples oranges bananas isPartial
date
2017-10-23 77 15 43 False
2017-10-24 77 15 46 False
2017-10-25 78 14 41 False
2017-10-26 78 14 43 False
2017-10-27 81 17 42 False
2017-10-28 91 17 39 False
...
You'll see an index column date
on the left, as well as the four data columns apples
, oranges
, bananas
, and isPartial
. You can ignore isPartial
for now: that field lets you know if the data point is complete for that particular date.
At this point you can select data by column, by columns + index, etc.:
>>> interest_over_time_df['apples']
date
2017-10-23 77
2017-10-24 77
2017-10-25 78
2017-10-26 78
2017-10-27 81
>>> interest_over_time_df['apples']['2017-10-26']
78
>>> interest_over_time_df.iloc[4] # Give me row 4
apples 81
oranges 17
bananas 42
isPartial False
Name: 2017-10-27 00:00:00, dtype: object
>>> interest_over_time_df.iloc[4, 0] # Give me row 4, value 0
81
You may be interested in pandas.DataFrame.loc
, which selects rows by label, as opposed to pandas.DataFrame.iloc
, which selects rows by integer:
>>> interest_over_time_df.loc['2017-10-26']
apples 78
oranges 14
bananas 43
isPartial False
Name: 2017-10-26 00:00:00, dtype: object
>>> interest_over_time_df.loc['2017-10-26', 'apples']
78
Hope that helps.