I have a somewhat large (~20 GB) partitioned dataset in parquet format. I would like to read specific partitions from the dataset using pyarrow
. I thought I could accomplish this with pyarrow.parquet.ParquetDataset
, but that doesn't seem to be the case. Here is a small example to illustrate what I want.
To create a random dataset:
from collections import OrderedDict
from itertools import product, chain
from uuid import uuid4
import os
from glob import glob
import numpy as np
import pandas as pd
import pyarrow as pa
from pyarrow.parquet import ParquetWriter, ParquetDataset
def get_partitions(basepath, partitions):
"""Generate directory hierarchy for a paritioned dataset
data
├── part1=foo
│ └── part2=True
├── part1=foo
│ └── part2=False
├── part1=bar
│ └── part2=True
└── part1=bar
└── part2=False
"""
path_tmpl = '/'.join(['{}={}'] * len(partitions)) # part=value
path_tmpl = '{}/{}'.format(basepath, path_tmpl) # part1=val/part2=val
parts = [product([part], vals) for part, vals in partitions.items()]
parts = [i for i in product(*parts)]
return [path_tmpl.format(*tuple(chain.from_iterable(i))) for i in parts]
partitions = OrderedDict(part1=['foo', 'bar'], part2=[True, False])
parts = get_partitions('data', partitions)
for part in parts:
# 3 columns, 5 rows
data = [pa.array(np.random.rand(5)) for i in range(3)]
table = pa.Table.from_arrays(data, ['a', 'b', 'c'])
os.makedirs(part, exist_ok=True)
out = ParquetWriter('{}/{}.parquet'.format(part, uuid4()),
table.schema, flavor='spark')
out.write_table(table)
out.close()
I want to read all values for partition one, and only True for partition 2. With pandas.read_parquet
, that's not possible, I have to read the whole column always. I tried the following with pyarrow
:
parts2 = OrderedDict(part1=['foo', 'bar'], part2=[True])
parts2 = get_partitions('data', parts2)
files = [glob('{}/*'.format(dirpath)) for dirpath in parts2]
files = [i for i in chain.from_iterable(files)]
df2 = ParquetDataset(files).read().to_pandas()
That doesn't work either:
>>> df2.columns
Index(['a', 'b', 'c'], dtype='object')
I can do this easily in pyspark
like this:
def get_spark_session_ctx(appName):
"""Get or create a Spark Session, and the underlying Context."""
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName(appName).getOrCreate()
sc = spark.sparkContext
return (spark, sc)
spark, sc = get_spark_session_ctx('test')
spark_df = spark.read.option('basePath', 'data').parquet(*parts2)
df3 = spark_df.toPandas()
As you can see below:
>>> df3.columns
Index(['a', 'b', 'c', 'part1', 'part2'], dtype='object')
Can this be done with pyarrow
or pandas
, or do I need some custom implementation?
Update: As requested by Wes, this is now on JIRA.