I have a dataset containing workers with their demographic information like age gender,address etc and their work locations. I created an RDD from the dataset and converted it into a DataFrame.
There are multiple entries for each ID. Hence, I created a DataFrame which contained only the ID of the worker and the various office locations' that he/she had worked.
|----------|----------------|
| **ID** **Office_Loc** |
|----------|----------------|
| 1 |Delhi, Mumbai, |
| | Gandhinagar |
|---------------------------|
| 2 | Delhi, Mandi |
|---------------------------|
| 3 |Hyderbad, Jaipur|
-----------------------------
I want to calculate the cosine similarity between each worker with every other worker based on their office locations'.
So, I iterated through the rows of the DataFrame, retrieving a single row from the DataFrame :
myIndex = 1
values = (ID_place_df.rdd.zipWithIndex()
.filter(lambda ((l, v), i): i == myIndex)
.map(lambda ((l,v), i): (l, v))
.collect())
and then using map
cos_weight = ID_place_df.select("ID","office_location").rdd\
.map(lambda x: get_cosine(values,x[0],x[1]))
to calculated the cosine similarity between the extracted row and the whole DataFrame.
I do not think my approach is a good one since I am iterating through the rows of the DataFrame, it defeats the whole purpose of using spark. Is there a better way to do it in pyspark? Kindly advise.
You can use the mllib
package to compute the L2
norm of the TF-IDF of every row. Then multiply the table with itself to get the cosine similarity as the dot product of two by two L2
norms:
1. RDD
rdd = sc.parallelize([[1, "Delhi, Mumbai, Gandhinagar"],[2, " Delhi, Mandi"], [3, "Hyderbad, Jaipur"]])
Compute TF-IDF
:
documents = rdd.map(lambda l: l[1].replace(" ", "").split(","))
from pyspark.mllib.feature import HashingTF, IDF
hashingTF = HashingTF()
tf = hashingTF.transform(documents)
You can specify the number of features in HashingTF
to make the feature matrix smaller (fewer columns).
tf.cache()
idf = IDF().fit(tf)
tfidf = idf.transform(tf)
Compute L2
norm:
from pyspark.mllib.feature import Normalizer
labels = rdd.map(lambda l: l[0])
features = tfidf
normalizer = Normalizer()
data = labels.zip(normalizer.transform(features))
Compute cosine similarity by multiplying the matrix with itself:
from pyspark.mllib.linalg.distributed import IndexedRowMatrix
mat = IndexedRowMatrix(data).toBlockMatrix()
dot = mat.multiply(mat.transpose())
dot.toLocalMatrix().toArray()
array([[ 0. , 0. , 0. , 0. ],
[ 0. , 1. , 0.10794634, 0. ],
[ 0. , 0.10794634, 1. , 0. ],
[ 0. , 0. , 0. , 1. ]])
OR: Using a Cartesian product and the function dot
on numpy arrays:
data.cartesian(data)\
.map(lambda l: ((l[0][0], l[1][0]), l[0][1].dot(l[1][1])))\
.sortByKey()\
.collect()
[((1, 1), 1.0),
((1, 2), 0.10794633570596117),
((1, 3), 0.0),
((2, 1), 0.10794633570596117),
((2, 2), 1.0),
((2, 3), 0.0),
((3, 1), 0.0),
((3, 2), 0.0),
((3, 3), 1.0)]
2. DataFrame
Since you seem to be using dataframes, you can use the spark ml
package instead:
import pyspark.sql.functions as psf
df = rdd.toDF(["ID", "Office_Loc"])\
.withColumn("Office_Loc", psf.split(psf.regexp_replace("Office_Loc", " ", ""), ','))
Compute TF-IDF:
from pyspark.ml.feature import HashingTF, IDF
hashingTF = HashingTF(inputCol="Office_Loc", outputCol="tf")
tf = hashingTF.transform(df)
idf = IDF(inputCol="tf", outputCol="feature").fit(tf)
tfidf = idf.transform(tf)
Compute L2
norm:
from pyspark.ml.feature import Normalizer
normalizer = Normalizer(inputCol="feature", outputCol="norm")
data = normalizer.transform(tfidf)
Compute matrix product:
from pyspark.mllib.linalg.distributed import IndexedRow, IndexedRowMatrix
mat = IndexedRowMatrix(
data.select("ID", "norm")\
.rdd.map(lambda row: IndexedRow(row.ID, row.norm.toArray()))).toBlockMatrix()
dot = mat.multiply(mat.transpose())
dot.toLocalMatrix().toArray()
OR: using a join and a UDF
for function dot
:
dot_udf = psf.udf(lambda x,y: float(x.dot(y)), DoubleType())
data.alias("i").join(data.alias("j"), psf.col("i.ID") < psf.col("j.ID"))\
.select(
psf.col("i.ID").alias("i"),
psf.col("j.ID").alias("j"),
dot_udf("i.norm", "j.norm").alias("dot"))\
.sort("i", "j")\
.show()
+---+---+-------------------+
| i| j| dot|
+---+---+-------------------+
| 1| 2|0.10794633570596117|
| 1| 3| 0.0|
| 2| 3| 0.0|
+---+---+-------------------+
This tutorial lists different methods to multiply large scale matrices: https://labs.yodas.com/large-scale-matrix-multiplication-with-pyspark-or-how-to-match-two-large-datasets-of-company-1be4b1b2871e