If I have a table like this:
df = pd.DataFrame({
'hID': [101, 102, 103, 101, 102, 104, 105, 101],
'dID': [10, 11, 12, 10, 11, 10, 12, 10],
'uID': ['James', 'Henry', 'Abe', 'James', 'Henry', 'Brian', 'Claude', 'James'],
'mID': ['A', 'B', 'A', 'B', 'A', 'A', 'A', 'C']
})
I can do count(distinct hID)
in Qlik to come up with count of 5 for unique hID. How do I do that in python using a pandas dataframe? Or maybe a numpy array? Similarly, if were to do count(hID)
I will get 8 in Qlik. What is the equivalent way to do it in pandas?
Count distinct values, use nunique
:
df['hID'].nunique()
5
Count only non-null values, use count
:
df['hID'].count()
8
Count total values including null values, use the size
attribute:
df['hID'].size
8
Use boolean indexing:
df.loc[df['mID']=='A','hID'].agg(['nunique','count','size'])
OR using query
:
df.query('mID == "A"')['hID'].agg(['nunique','count','size'])
Output:
nunique 5
count 5
size 5
Name: hID, dtype: int64