I have a dataset that looks like this
1908 January 5.0 -1.4
1908 February 7.3 1.9
1908 March 6.2 0.3
1908 April NaN 2.1
1908 May NaN 7.7
1908 June 17.7 8.7
1908 July NaN 11.0
1908 August 17.5 9.7
1908 September 16.3 8.4
1908 October 14.6 8.0
1908 November 9.6 3.4
1908 December 5.8 NaN
1909 January 5.0 0.1
1909 February 5.5 -0.3
1909 March 5.6 -0.3
1909 April 12.2 3.3
1909 May 14.7 4.8
1909 June 15.0 7.5
1909 July 17.3 10.8
1909 August 18.8 10.7
I want to replace the NaN
s using KNN as the method. I looked up sklearn
s Imputer
class but it supports only mean, median and mode imputation. There is a feature request here but I don't think thats been implemented as of now. Any ideas on how to replace the NaN
s from the last two columns using KNN?
Edit: Since I need to run codes on another environment, I don't have the luxury of installing packages. sklearn, pandas, numpy and other standard packages are the only ones I can use.
fancyimpute package supports such kind of imputation, using the following API:
from fancyimpute import KNN
# X is the complete data matrix
# X_incomplete has the same values as X except a subset have been replace with NaN
# Use 3 nearest rows which have a feature to fill in each row's missing features
X_filled_knn = KNN(k=3).complete(X_incomplete)
Here are the imputations supported by this package:
•SimpleFill: Replaces missing entries with the mean or median of each column.
•KNN: Nearest neighbor imputations which weights samples using the mean squared difference on features for which two rows both have observed data.
•SoftImpute: Matrix completion by iterative soft thresholding of SVD decompositions. Inspired by the softImpute package for R, which is based on Spectral Regularization Algorithms for Learning Large Incomplete Matrices by Mazumder et. al.
•IterativeSVD: Matrix completion by iterative low-rank SVD decomposition. Should be similar to SVDimpute from Missing value estimation methods for DNA microarrays by Troyanskaya et. al.
•MICE: Reimplementation of Multiple Imputation by Chained Equations.
•MatrixFactorization: Direct factorization of the incomplete matrix into low-rank U and V, with an L1 sparsity penalty on the elements of U and an L2 penalty on the elements of V. Solved by gradient descent.
•NuclearNormMinimization: Simple implementation of Exact Matrix Completion via Convex Optimization by Emmanuel Candes and Benjamin Recht using cvxpy. Too slow for large matrices.
•BiScaler: Iterative estimation of row/column means and standard deviations to get doubly normalized matrix. Not guaranteed to converge but works well in practice. Taken from Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares.