I've never been sure that I understand the difference between str/unicode decode and encode.
I know that str().decode()
is for when you have a string of bytes that you know has a certain character encoding, given that encoding name it will return a unicode string.
I know that unicode().encode()
converts unicode chars into a string of bytes according to a given encoding name.
But I don't understand what str().encode()
and unicode().decode()
are for. Can anyone explain, and possibly also correct anything else I've gotten wrong above?
EDIT:
Several answers give info on what .encode
does on a string, but no-one seems to know what .decode
does for unicode.
The decode
method of unicode strings really doesn't have any applications at all (unless you have some non-text data in a unicode string for some reason -- see below). It is mainly there for historical reasons, i think. In Python 3 it is completely gone.
unicode().decode()
will perform an implicit encoding of s
using the default (ascii) codec. Verify this like so:
>>> s = u'ö'
>>> s.decode()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character u'\xf6' in position 0:
ordinal not in range(128)
>>> s.encode('ascii')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character u'\xf6' in position 0:
ordinal not in range(128)
The error messages are exactly the same.
For str().encode()
it's the other way around -- it attempts an implicit decoding of s
with the default encoding:
>>> s = 'ö'
>>> s.decode('utf-8')
u'\xf6'
>>> s.encode()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 0:
ordinal not in range(128)
Used like this, str().encode()
is also superfluous.
But there is another application of the latter method that is useful: there are encodings that have nothing to do with character sets, and thus can be applied to 8-bit strings in a meaningful way:
>>> s.encode('zip')
'x\x9c;\xbc\r\x00\x02>\x01z'
You are right, though: the ambiguous usage of "encoding" for both these applications is... awkard. Again, with separate byte
and string
types in Python 3, this is no longer an issue.