Process pandas dataframe into violinplot

Emily Beth picture Emily Beth · Apr 11, 2017 · Viewed 16.2k times · Source

I have data I'm reading from an Excel spreadsheet. The data has a number of observations for each of six scenarios, S1 to S6. When I read in the data to my dataframe df, it looks as follows:

      Scenario        LMP
0           S1 -21.454544
1           S1 -20.778094
2           S1 -20.027689
3           S1 -19.747170
4           S1 -20.814405
5           S1 -21.955406
6           S1 -23.018960
...
12258       S6 -34.089906
12259       S6 -34.222814
12260       S6 -26.712010
12261       S6 -24.555973
12262       S6 -23.062616
12263       S6 -20.488411

I want to create a violinplot that has a different violin for each of the six scenarios. I'm new to Pandas and dataframes, and despite much research/testing over the last day, I can't quite figure out an elegant way to pass some reference(s) to my dataframe (to split it into different series for each scenario) that will work in the axes.violinplot() statement. For instance, I've tried the following, which doesn't work. I get a "ValueError: cannot copy sequence with size 1752 to array axis with dimension 2" on my axes.violinplot statement.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# load data into a dataframe
df = pd.read_excel('Modeling analysis charts.xlsx',
                   sheetname='lmps',
                   parse_cols=[7,12],
                   skiprows=0,
                   header=1)

fontsize = 10

fig, axes = plt.subplots()

axes.violinplot(dataset = [[df.loc[df.Scenario == 'S1']],
                           [df.loc[df.Scenario == 'S2']],
                           [df.loc[df.Scenario == 'S3']],
                           [df.loc[df.Scenario == 'S4']],
                           [df.loc[df.Scenario == 'S5']],
                           [df.loc[df.Scenario == 'S6']]
                          ]
                )
axes.set_title('Day Ahead Market')

axes.yaxis.grid(True)
axes.set_xlabel('Scenario')
axes.set_ylabel('LMP ($/MWh)')

plt.show()

Answer

ImportanceOfBeingErnest picture ImportanceOfBeingErnest · Apr 11, 2017

You need to be careful how to create the dataset to plot. In the code from the question you have a list of lists of one dataframe. However you need simply a list of one-column dataframes.

You would therefore also need to take only the "LMP" column from the filtered dataframes, otherwise the violinplot wouldn't know which column to plot.

Here is a working example which stays close to the original code:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


x = np.random.poisson(lam =3, size=100)
y = np.random.choice(["S{}".format(i+1) for i in range(6)], size=len(x))
df = pd.DataFrame({"Scenario":y, "LMP":x})

fig, axes = plt.subplots()

axes.violinplot(dataset = [df[df.Scenario == 'S1']["LMP"].values,
                           df[df.Scenario == 'S2']["LMP"].values,
                           df[df.Scenario == 'S3']["LMP"].values,
                           df[df.Scenario == 'S4']["LMP"].values,
                           df[df.Scenario == 'S5']["LMP"].values,
                           df[df.Scenario == 'S6']["LMP"].values ] )

axes.set_title('Day Ahead Market')
axes.yaxis.grid(True)
axes.set_xlabel('Scenario')
axes.set_ylabel('LMP ($/MWh)')

plt.show()

enter image description here