I have a Pandas data frame which is MultiIndexed. The second level contains a year ([2014,2015]) and the third contains the month number ([1, 2, .., 12]). I would like to merge these two into a single level like - [1/2014, 2/2014 ..., 6/2015]. How could this be done?
I'm new to Pandas. Searched a lot but could not find any similar question/solution.
Edit: I found a way to avoid having to do this altogether with the answer to this question. I should have been creating my data frame that way. This seems to be the way to go for indexing by DateTime.
Consider the pd.MultiIndex
and pd.DataFrame
, mux
and df
mux = pd.MultiIndex.from_product([list('ab'), [2014, 2015], range(1, 3)])
df = pd.DataFrame(dict(A=1), mux)
print(df)
A
a 2014 1 1
2 1
2015 1 1
2 1
b 2014 1 1
2 1
2015 1 1
2 1
We want to reassign to the index a list if lists that represent the index we want.
I want the 1st level the same
df.index.get_level_values(0)
I want the new 2nd level to be a string concatenation of the current 2nd and 3rd levels but reverse the order
df.index.map('{0[2]}/{0[1]}'.format)
df.index = [df.index.get_level_values(0), df.index.map('{0[2]}/{0[1]}'.format)]
print(df)
A
a 1/2014 1
2/2014 1
1/2015 1
2/2015 1
b 1/2014 1
2/2014 1
1/2015 1
2/2015 1