I have the following data frame
ipdb> csv_data
country sale date trans_factor
0 India 403171 12/01/2012 1
1 Bhutan 394096 12/01/2012 2
2 Nepal super 12/01/2012 3
3 madhya 355883 12/01/2012 4
4 sudan man 12/01/2012 5
As of now i am using below code to insert data in table, like if table already exists, drop it and create new table
csv_file_path = data_mapping_record.csv_file_path
original_csv_header = pandas.read_csv(csv_file_path).columns.tolist()
csv_data = pandas.read_csv(csv_file_path, skiprows=[0], names=original_csv_header, infer_datetime_format=True)
table_name = data_mapping_record.csv_file_path.split('/')[-1].split('.')[0]
engine = create_engine(
'postgresql://username:password@localhost:5432/pandas_data')
# Delete table if already exits
engine.execute("""DROP TABLE IF EXISTS "%s" """ % (table_name))
# Write the pandas dataframe to database using sqlalchemy and pands.to_sql
csv_data_frame.to_sql(table_name, engine, chunksize=1000)
But what i need is, without deleting the table, if table already exists just append the data to the already existing one, is there any way in pandas to_sql
method ?
IIUC you can simply use if_exists='append'
parameter:
csv_data_frame.to_sql(table_name, engine, if_exists='append', chunksize=1000)
from docs:
if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’
fail: If table exists, do nothing.
replace: If table exists, drop it, recreate it, and insert data.
append: If table exists, insert data. Create if does not exist.