python pandas: how to calculate derivative/gradient

nskalis picture nskalis · Jan 21, 2017 · Viewed 32.6k times · Source

Given that I have the following two vectors:

In [99]: time_index
Out[99]: 
[1484942413,
 1484942712,
 1484943012,
 1484943312,
 1484943612,
 1484943912,
 1484944212,
 1484944511,
 1484944811,
 1484945110]

In [100]: bytes_in
Out[100]: 
[1293981210388,
 1293981379944,
 1293981549960,
 1293981720866,
 1293981890968,
 1293982062261,
 1293982227492,
 1293982391244,
 1293982556526,
 1293982722320]

Where bytes_in is an incremental only counter, and time_index is a list to unix timestamps (epoch).

Objective: What I would like to calculate is the bitrate.

That means that I will build a data frame like

In [101]: timeline = pandas.to_datetime(time_index, unit="s")

In [102]: recv = pandas.Series(bytes_in, timeline).resample("300S").mean().ffill().apply(lambda i: i*8)

In [103]: recv
Out[103]: 
2017-01-20 20:00:00    10351849683104
2017-01-20 20:05:00    10351851039552
2017-01-20 20:10:00    10351852399680
2017-01-20 20:15:00    10351853766928
2017-01-20 20:20:00    10351855127744
2017-01-20 20:25:00    10351856498088
2017-01-20 20:30:00    10351857819936
2017-01-20 20:35:00    10351859129952
2017-01-20 20:40:00    10351860452208
2017-01-20 20:45:00    10351861778560
Freq: 300S, dtype: int64

Question: Now, what is strange, calculating the gradient manually gives me :

In [104]: (bytes_in[1]-bytes_in[0])*8/300
Out[104]: 4521.493333333333

which is the correct value ..

while calculating the gradient with pandas gives me

In [124]: recv.diff()
Out[124]: 
2017-01-20 20:00:00          NaN
2017-01-20 20:05:00    1356448.0
2017-01-20 20:10:00    1360128.0
2017-01-20 20:15:00    1367248.0
2017-01-20 20:20:00    1360816.0
2017-01-20 20:25:00    1370344.0
2017-01-20 20:30:00    1321848.0
2017-01-20 20:35:00    1310016.0
2017-01-20 20:40:00    1322256.0
2017-01-20 20:45:00    1326352.0
Freq: 300S, dtype: float64

which is not the same as above, 1356448.0 is different than 4521.493333333333

Could you please enlighten on what I am doing wrong ?

Answer

piRSquared picture piRSquared · Jan 21, 2017

pd.Series.diff() only takes the differences. It doesn't divide by the delta of the index as well.

This gets you the answer

recv.diff() / recv.index.to_series().diff().dt.total_seconds()

2017-01-20 20:00:00            NaN
2017-01-20 20:05:00    4521.493333
2017-01-20 20:10:00    4533.760000
2017-01-20 20:15:00    4557.493333
2017-01-20 20:20:00    4536.053333
2017-01-20 20:25:00    4567.813333
2017-01-20 20:30:00    4406.160000
2017-01-20 20:35:00    4366.720000
2017-01-20 20:40:00    4407.520000
2017-01-20 20:45:00    4421.173333
Freq: 300S, dtype: float64

You could also use numpy.gradient passing the bytes_in and the delta you expect to have. This will not reduce the length by one, instead making assumptions about the edges.

np.gradient(bytes_in, 300) * 8

array([ 4521.49333333,  4527.62666667,  4545.62666667,  4546.77333333,
        4551.93333333,  4486.98666667,  4386.44      ,  4387.12      ,
        4414.34666667,  4421.17333333])