Applying pandas.to_numeric
to a dataframe column which contains strings that represent numbers (and possibly other unparsable strings) results in an error message like this:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-66-07383316d7b6> in <module>()
1 for column in shouldBeNumericColumns:
----> 2 trainData[column] = pandas.to_numeric(trainData[column])
/usr/local/lib/python3.5/site-packages/pandas/tools/util.py in to_numeric(arg, errors)
113 try:
114 values = lib.maybe_convert_numeric(values, set(),
--> 115 coerce_numeric=coerce_numeric)
116 except:
117 if errors == 'raise':
pandas/src/inference.pyx in pandas.lib.maybe_convert_numeric (pandas/lib.c:53558)()
pandas/src/inference.pyx in pandas.lib.maybe_convert_numeric (pandas/lib.c:53344)()
ValueError: Unable to parse string
Wouldn't it be helpful to see which value failed to parse?
I think you can add parameter errors='coerce'
for convert bad non numeric values to NaN
, then check this values by isnull
and use boolean indexing
:
print (df[pd.to_numeric(df.col, errors='coerce').isnull()])
Sample:
df = pd.DataFrame({'B':['a','7','8'],
'C':[7,8,9]})
print (df)
B C
0 a 7
1 7 8
2 8 9
print (df[pd.to_numeric(df.B, errors='coerce').isnull()])
B C
0 a 7
Or if need find all string in mixed column - numerice with string values check type
of values if is string
:
df = pd.DataFrame({'B':['a',7, 8],
'C':[7,8,9]})
print (df)
B C
0 a 7
1 7 8
2 8 9
print (df[df.B.apply(lambda x: isinstance(x, str))])
B C
0 a 7