I am trying to implement deconvolution in Keras. My model definition is as follows:
model=Sequential()
model.add(Convolution2D(32, 3, 3, border_mode='same',
input_shape=X_train.shape[1:]))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3,border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
I want to perform deconvolution or transposed convolution on the output given by the first convolution layer i.e. convolution2d_1
.
Lets say the feature map we have after first convolution layer is X
which is of (9, 32, 32, 32)
where 9 is the no of images of dimension 32x32
I have passed through the layer. The weight matrix of the first layer obtained by get_weights()
function of Keras. The dimension of weight matrix is (32, 3, 3, 2)
.
The code I am using for performing transposed convolution is
conv_out = K.deconv2d(self.x, W, (9,3,32,32), dim_ordering = "th")
deconv_func = K.function([self.x, K.learning_phase()], conv_out)
X_deconv = deconv_func([X, 0 ])
But getting error:
CorrMM shape inconsistency:
bottom shape: 9 32 34 34
weight shape: 3 32 3 3
top shape: 9 32 32 32 (expected 9 3 32 32)
Can anyone please tell me where I am going wrong?
You can easily use Deconvolution2D layer.
Here is what you are trying to achieve:
batch_sz = 1
output_shape = (batch_sz, ) + X_train.shape[1:]
conv_out = Deconvolution2D(3, 3, 3, output_shape, border_mode='same')(model.layers[0].output)
deconv_func = K.function([model.input, K.learning_phase()], [conv_out])
test_x = np.random.random(output_shape)
X_deconv = deconv_func([test_x, 0 ])
But its better to create a functional model which will help both for training and prediction..
batch_sz = 10
output_shape = (batch_sz, ) + X_train.shape[1:]
conv_out = Deconvolution2D(3, 3, 3, output_shape, border_mode='same')(model.layers[0].output)
model2 = Model(model.input, [model.output, conv_out])
model2.summary()
model2.compile(loss=['categorical_crossentropy', 'mse'], optimizer='adam')
model2.fit(X_train, [Y_train, X_train], batch_size=batch_sz)