I have the following in a Pandas DataFrame in Python 2.7:
Ser_Numb LAT LONG
1 74.166061 30.512811
2 72.249672 33.427724
3 67.499828 37.937264
4 84.253715 69.328767
5 72.104828 33.823462
6 63.989462 51.918173
7 80.209112 33.530778
8 68.954132 35.981256
9 83.378214 40.619652
10 68.778571 6.607066
I am looking to calculate the distance between successive rows in the dataframe. The output should look something like this:
Ser_Numb LAT LONG Distance
1 74.166061 30.512811 0
2 72.249672 33.427724 d_between_Ser_Numb2 and Ser_Numb1
3 67.499828 37.937264 d_between_Ser_Numb3 and Ser_Numb2
4 84.253715 69.328767 d_between_Ser_Numb4 and Ser_Numb3
5 72.104828 33.823462 d_between_Ser_Numb5 and Ser_Numb4
6 63.989462 51.918173 d_between_Ser_Numb6 and Ser_Numb5
7 80.209112 33.530778 .
8 68.954132 35.981256 .
9 83.378214 40.619652 .
10 68.778571 6.607066 .
Attempt
This post looks somewhat similar but it is calculating the distance between fixed points. I need the distance between successive points.
I tried to adapt this as follows:
df['LAT_rad'], df['LON_rad'] = np.radians(df['LAT']), np.radians(df['LONG'])
df['dLON'] = df['LON_rad'] - np.radians(df['LON_rad'].shift(1))
df['dLAT'] = df['LAT_rad'] - np.radians(df['LAT_rad'].shift(1))
df['distance'] = 6367 * 2 * np.arcsin(np.sqrt(np.sin(df['dLAT']/2)**2 + math.cos(df['LAT_rad'].astype(float).shift(-1)) * np.cos(df['LAT_rad']) * np.sin(df['dLON']/2)**2))
However, I get the following error:
Traceback (most recent call last):
File "C:\Python27\test.py", line 115, in <module>
df['distance'] = 6367 * 2 * np.arcsin(np.sqrt(np.sin(df['dLAT']/2)**2 + math.cos(df['LAT_rad'].astype(float).shift(-1)) * np.cos(df['LAT_rad']) * np.sin(df['dLON']/2)**2))
File "C:\Python27\lib\site-packages\pandas\core\series.py", line 78, in wrapper
"{0}".format(str(converter)))
TypeError: cannot convert the series to <type 'float'>
[Finished in 2.3s with exit code 1]
This error was fixed from MaxU's comment. With the fix, the output of this calculation is not making sense - the distance is nearly 8000 km:
Ser_Numb LAT LONG LAT_rad LON_rad dLON dLAT distance
0 1 74.166061 30.512811 1.294442 0.532549 NaN NaN NaN
1 2 72.249672 33.427724 1.260995 0.583424 0.574129 1.238402 8010.487211
2 3 67.499828 37.937264 1.178094 0.662130 0.651947 1.156086 7415.364469
3 4 84.253715 69.328767 1.470505 1.210015 1.198459 1.449943 9357.184623
4 5 72.104828 33.823462 1.258467 0.590331 0.569212 1.232802 7992.087820
5 6 63.989462 51.918173 1.116827 0.906143 0.895840 1.094862 7169.812123
6 7 80.209112 33.530778 1.399913 0.585222 0.569407 1.380421 8851.558260
7 8 68.954132 35.981256 1.203477 0.627991 0.617777 1.179044 7559.609520
8 9 83.378214 40.619652 1.455224 0.708947 0.697986 1.434220 9194.371978
9 10 68.778571 6.607066 1.200413 0.115315 0.102942 1.175014 NaN
According to:
print haversine(30.512811, 74.166061, 33.427724, 72.249672)
then I
get 232.55 kmThe answer should be 233 km, but my approach is giving ~8000 km. I think there is something wrong with how I am trying to iterate between successive rows.
Question: Is there a way to do this in Pandas? Or do I need to loop through the dataframe one row at a time?
Additional Information:
To create the above DF, select it and copy to clipboard. Then:
import pandas as pd
df = pd.read_clipboard()
print df
you can use this great solution (c) @derricw (don't forget to upvote it ;-):
# vectorized haversine function
def haversine(lat1, lon1, lat2, lon2, to_radians=True, earth_radius=6371):
"""
slightly modified version: of http://stackoverflow.com/a/29546836/2901002
Calculate the great circle distance between two points
on the earth (specified in decimal degrees or in radians)
All (lat, lon) coordinates must have numeric dtypes and be of equal length.
"""
if to_radians:
lat1, lon1, lat2, lon2 = np.radians([lat1, lon1, lat2, lon2])
a = np.sin((lat2-lat1)/2.0)**2 + \
np.cos(lat1) * np.cos(lat2) * np.sin((lon2-lon1)/2.0)**2
return earth_radius * 2 * np.arcsin(np.sqrt(a))
df['dist'] = \
haversine(df.LAT.shift(), df.LONG.shift(),
df.loc[1:, 'LAT'], df.loc[1:, 'LONG'])
Result:
In [566]: df
Out[566]:
Ser_Numb LAT LONG dist
0 1 74.166061 30.512811 NaN
1 2 72.249672 33.427724 232.549785
2 3 67.499828 37.937264 554.905446
3 4 84.253715 69.328767 1981.896491
4 5 72.104828 33.823462 1513.397997
5 6 63.989462 51.918173 1164.481327
6 7 80.209112 33.530778 1887.256899
7 8 68.954132 35.981256 1252.531365
8 9 83.378214 40.619652 1606.340727
9 10 68.778571 6.607066 1793.921854
UPDATE: this will help to understand the logic:
In [573]: pd.concat([df['LAT'].shift(), df.loc[1:, 'LAT']], axis=1, ignore_index=True)
Out[573]:
0 1
0 NaN NaN
1 74.166061 72.249672
2 72.249672 67.499828
3 67.499828 84.253715
4 84.253715 72.104828
5 72.104828 63.989462
6 63.989462 80.209112
7 80.209112 68.954132
8 68.954132 83.378214
9 83.378214 68.778571