I'd appreciate some help in finding and understanding a pythonic way to optimize the following array manipulations in nested for loops:
def _func(a, b, radius):
"Return 0 if a>b, otherwise return 1"
if distance.euclidean(a, b) < radius:
return 1
else:
return 0
def _make_mask(volume, roi, radius):
mask = numpy.zeros(volume.shape)
for x in range(volume.shape[0]):
for y in range(volume.shape[1]):
for z in range(volume.shape[2]):
mask[x, y, z] = _func((x, y, z), roi, radius)
return mask
Where volume.shape
(182, 218, 200) and roi.shape
(3,) are both ndarray
types; and radius
is an int
Approach #1
Here's a vectorized approach -
m,n,r = volume.shape
x,y,z = np.mgrid[0:m,0:n,0:r]
X = x - roi[0]
Y = y - roi[1]
Z = z - roi[2]
mask = X**2 + Y**2 + Z**2 < radius**2
Possible improvement : We can probably speedup the last step with numexpr
module -
import numexpr as ne
mask = ne.evaluate('X**2 + Y**2 + Z**2 < radius**2')
Approach #2
We can also gradually build the three ranges corresponding to the shape parameters and perform the subtraction against the three elements of roi
on the fly without actually creating the meshes as done earlier with np.mgrid
. This would be benefited by the use of broadcasting
for efficiency purposes. The implementation would look like this -
m,n,r = volume.shape
vals = ((np.arange(m)-roi[0])**2)[:,None,None] + \
((np.arange(n)-roi[1])**2)[:,None] + ((np.arange(r)-roi[2])**2)
mask = vals < radius**2
Simplified version : Thanks to @Bi Rico for suggesting an improvement here as we can use np.ogrid
to perform those operations in a bit more concise manner, like so -
m,n,r = volume.shape
x,y,z = np.ogrid[0:m,0:n,0:r]-roi
mask = (x**2+y**2+z**2) < radius**2
Runtime test
Function definitions -
def vectorized_app1(volume, roi, radius):
m,n,r = volume.shape
x,y,z = np.mgrid[0:m,0:n,0:r]
X = x - roi[0]
Y = y - roi[1]
Z = z - roi[2]
return X**2 + Y**2 + Z**2 < radius**2
def vectorized_app1_improved(volume, roi, radius):
m,n,r = volume.shape
x,y,z = np.mgrid[0:m,0:n,0:r]
X = x - roi[0]
Y = y - roi[1]
Z = z - roi[2]
return ne.evaluate('X**2 + Y**2 + Z**2 < radius**2')
def vectorized_app2(volume, roi, radius):
m,n,r = volume.shape
vals = ((np.arange(m)-roi[0])**2)[:,None,None] + \
((np.arange(n)-roi[1])**2)[:,None] + ((np.arange(r)-roi[2])**2)
return vals < radius**2
def vectorized_app2_simplified(volume, roi, radius):
m,n,r = volume.shape
x,y,z = np.ogrid[0:m,0:n,0:r]-roi
return (x**2+y**2+z**2) < radius**2
Timings -
In [106]: # Setup input arrays
...: volume = np.random.rand(90,110,100) # Half of original input sizes
...: roi = np.random.rand(3)
...: radius = 3.4
...:
In [107]: %timeit _make_mask(volume, roi, radius)
1 loops, best of 3: 41.4 s per loop
In [108]: %timeit vectorized_app1(volume, roi, radius)
10 loops, best of 3: 62.3 ms per loop
In [109]: %timeit vectorized_app1_improved(volume, roi, radius)
10 loops, best of 3: 47 ms per loop
In [110]: %timeit vectorized_app2(volume, roi, radius)
100 loops, best of 3: 4.26 ms per loop
In [139]: %timeit vectorized_app2_simplified(volume, roi, radius)
100 loops, best of 3: 4.36 ms per loop
So, as always broadcasting
showing its magic for a crazy almost 10,000x
speedup over the original code and more than 10x
better than creating meshes by using on-the-fly broadcasted operations!