I have a table containing some countries and their KPI from the world-banks API. this looks like . As you can see no nan values are present.
However, I need to pivot this table to bring int into the right shape for analysis. A pd.pivot_table(countryKPI, index=['germanCName'], columns=['indicator.id'])
For some e.g. TUERKEI
this works just fine:
But for most of the countries strange nan values are introduced. How can I prevent this?
I think the best way to understand pivoting
is to apply it to a small sample:
import pandas as pd
import numpy as np
countryKPI = pd.DataFrame({'germanCName':['a','a','b','c','c'],
'indicator.id':['z','x','z','y','m'],
'value':[7,8,9,7,8]})
print (countryKPI)
germanCName indicator.id value
0 a z 7
1 a x 8
2 b z 9
3 c y 7
4 c m 8
print (pd.pivot_table(countryKPI, index=['germanCName'], columns=['indicator.id']))
value
indicator.id m x y z
germanCName
a NaN 8.0 NaN 7.0
b NaN NaN NaN 9.0
c 8.0 NaN 7.0 NaN
If need replace NaN
to 0
add parameter fill_value
:
print (countryKPI.pivot_table(index='germanCName',
columns='indicator.id',
values='value',
fill_value=0))
indicator.id m x y z
germanCName
a 0 8 0 7
b 0 0 0 9
c 8 0 7 0