I have an algorithm Viola-Jones in Python
. I'm using haarcascade
xml, which I load from openCV
root file. But there wasn't any xml file for mouth and nose in openCV
, so I downloaded these files from EmguCV. Result for detection of face is OK, but detection of eye isn't good and nose with mouth is very bad. I tried to change parameters in face_cascade.detectMultiScale
, but it didn't help at all.
My code:
import cv2
import sys
def facedet(img):
face_cascade = cv2.CascadeClassifier('/home/kattynka/opencv/data/haarcascades/haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('/home/kattynka/opencv/data/haarcascades/haarcascade_eye.xml')
mouth_cascade = cv2.CascadeClassifier('/home/kattynka/opencv/data/haarcascades/haarcascade_mcs_mouth.xml')
nose_cascade = cv2.CascadeClassifier('/home/kattynka/opencv/data/haarcascades/haarcascade_mcs_nose.xml')
img = cv2.imread(img)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
nose = nose_cascade.detectMultiScale(roi_gray)
mouth = mouth_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color, (ex,ey), (ex+ew, ey+eh), (0,255,0), 2)
for (nx, ny, nw, nh) in nose:
cv2.rectangle(roi_color, (nx, ny), (nx + nw, ny + nh), (0, 0, 255), 2)
for (mx, my, mw, mh) in mouth:
cv2.rectangle(roi_color, (mx, my), (mx + mw, my + mh), (0, 0, 0), 2)
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
#img = sys.argv[1]
facedet(img)
My question
What am I doing wrong? Is there any simple solution, which will give me a better result?
Output:
Haar cascades perform alright for faces but not so well for smaller individual parts. A better solution is to detect all the face landmarks together. A good algorithm for that is "One Millisecond Face Alignment with an Ensemble of Regression Trees by Vahid Kazemi and Josephine Sullivan, CVPR 2014" which is implemented in Dlib (http://dlib.net/face_landmark_detection.py.html).