I have a Pandas Series, that needs to be log-transformed to be normal distributed. But I can´t log transform yet, because there are values =0 and values below 1 (0-4000). Therefore I want to normalize the Series first. I heard of StandardScaler(scikit-learn), Z-score standardization and Min-Max scaling(normalization). I want to cluster the data later, which would be the best method? StandardScaler and Z-score standardization use mean, variance etc. Can I use them on "not yet normal distibuted" data?
To transform to logarithms, you need positive values, so translate your range of values (-1,1] to normalized (0,1] as follows
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.uniform(-1,1,(10,1)))
df['norm'] = (1+df[0])/2 # (-1,1] -> (0,1]
df['lognorm'] = np.log(df['norm'])
results in a dataframe like
0 norm lognorm
0 0.360660 0.680330 -0.385177
1 0.973724 0.986862 -0.013225
2 0.329130 0.664565 -0.408622
3 0.604727 0.802364 -0.220193
4 0.416732 0.708366 -0.344795
5 0.085439 0.542719 -0.611163
6 -0.964246 0.017877 -4.024232
7 0.738281 0.869141 -0.140250
8 0.558220 0.779110 -0.249603
9 0.485144 0.742572 -0.297636