I would like to modify the cell values of a dataframe column (Age) where currently it is blank and I would only do it if another column (Survived) has the value 0 for the corresponding row where it is blank for Age. If it is 1 in the Survived column but blank in Age column then I will keep it as null.
I tried to use &&
operator but it didn't work. Here is my code:
tdata.withColumn("Age", when((tdata.Age == "" && tdata.Survived == "0"), mean_age_0).otherwise(tdata.Age)).show()
Any suggestions how to handle that? Thanks.
Error Message:
SyntaxError: invalid syntax
File "<ipython-input-33-3e691784411c>", line 1
tdata.withColumn("Age", when((tdata.Age == "" && tdata.Survived == "0"), mean_age_0).otherwise(tdata.Age)).show()
^
You get SyntaxError
error exception because Python has no &&
operator. It has and
and &
where the latter one is the correct choice to create boolean expressions on Column
(|
for a logical disjunction and ~
for logical negation).
Condition you created is also invalid because it doesn't consider operator precedence. &
in Python has a higher precedence than ==
so expression has to be parenthesized.
(col("Age") == "") & (col("Survived") == "0")
## Column<b'((Age = ) AND (Survived = 0))'>
On a side note when
function is equivalent to case
expression not WHEN
clause. Still the same rules apply. Conjunction:
df.where((col("foo") > 0) & (col("bar") < 0))
Disjunction:
df.where((col("foo") > 0) | (col("bar") < 0))
You can of course define conditions separately to avoid brackets:
cond1 = col("Age") == ""
cond2 = col("Survived") == "0"
cond1 & cond2