How to import a text file on AWS S3 into pandas without writing to disk

alpalalpal picture alpalalpal · Jun 8, 2016 · Viewed 85.7k times · Source

I have a text file saved on S3 which is a tab delimited table. I want to load it into pandas but cannot save it first because I am running on a heroku server. Here is what I have so far.

import io
import boto3
import os
import pandas as pd

os.environ["AWS_ACCESS_KEY_ID"] = "xxxxxxxx"
os.environ["AWS_SECRET_ACCESS_KEY"] = "xxxxxxxx"

s3_client = boto3.client('s3')
response = s3_client.get_object(Bucket="my_bucket",Key="filename.txt")
file = response["Body"]


pd.read_csv(file, header=14, delimiter="\t", low_memory=False)

the error is

OSError: Expected file path name or file-like object, got <class 'bytes'> type

How do I convert the response body into a format pandas will accept?

pd.read_csv(io.StringIO(file), header=14, delimiter="\t", low_memory=False)

returns

TypeError: initial_value must be str or None, not StreamingBody

pd.read_csv(io.BytesIO(file), header=14, delimiter="\t", low_memory=False)

returns

TypeError: 'StreamingBody' does not support the buffer interface

UPDATE - Using the following worked

file = response["Body"].read()

and

pd.read_csv(io.BytesIO(file), header=14, delimiter="\t", low_memory=False)

Answer

Stefan picture Stefan · Jun 8, 2016

pandas uses boto for read_csv, so you should be able to:

import boto
data = pd.read_csv('s3://bucket....csv')

If you need boto3 because you are on python3.4+, you can

import boto3
import io
s3 = boto3.client('s3')
obj = s3.get_object(Bucket='bucket', Key='key')
df = pd.read_csv(io.BytesIO(obj['Body'].read()))

Since version 0.20.1 pandas uses s3fs, see answer below.