I am trying to write a dataframe to a gzipped csv in python pandas, using the following:
import pandas as pd
import datetime
import csv
import gzip
# Get data (with previous connection and script variables)
df = pd.read_sql_query(script, conn)
# Create today's date, to append to file
todaysdatestring = str(datetime.datetime.today().strftime('%Y%m%d'))
print todaysdatestring
# Create csv with gzip compression
df.to_csv('foo-%s.csv.gz' % todaysdatestring,
sep='|',
header=True,
index=False,
quoting=csv.QUOTE_ALL,
compression='gzip',
quotechar='"',
doublequote=True,
line_terminator='\n')
This just creates a csv called 'foo-YYYYMMDD.csv.gz', not an actual gzip archive.
I've also tried adding this:
#Turn to_csv statement into a variable
d = df.to_csv('foo-%s.csv.gz' % todaysdatestring,
sep='|',
header=True,
index=False,
quoting=csv.QUOTE_ALL,
compression='gzip',
quotechar='"',
doublequote=True,
line_terminator='\n')
# Write above variable to gzip
with gzip.open('foo-%s.csv.gz' % todaysdatestring, 'wb') as output:
output.write(d)
Which fails as well. Any ideas?
Using df.to_csv()
with the keyword argument compression='gzip'
should produce a gzip archive. I tested it using same keyword arguments as you, and it worked.
You may need to upgrade pandas, as gzip was not implemented until version 0.17.1, but trying to use it on prior versions will not raise an error, and just produce a regular csv. You can determine your current version of pandas by looking at the output of pd.__version__
.