I have time-series data, as followed:
emplvl
date
2003-01-01 10955.000000
2003-04-01 11090.333333
2003-07-01 11157.000000
2003-10-01 11335.666667
2004-01-01 11045.000000
2004-04-01 11175.666667
2004-07-01 11135.666667
2004-10-01 11480.333333
2005-01-01 11441.000000
2005-04-01 11531.000000
2005-07-01 11320.000000
2005-10-01 11516.666667
2006-01-01 11291.000000
2006-04-01 11223.000000
2006-07-01 11230.000000
2006-10-01 11293.000000
2007-01-01 11126.666667
2007-04-01 11383.666667
2007-07-01 11535.666667
2007-10-01 11567.333333
2008-01-01 11226.666667
2008-04-01 11342.000000
2008-07-01 11201.666667
2008-10-01 11321.000000
2009-01-01 11082.333333
2009-04-01 11099.000000
2009-07-01 10905.666667
I would like to add, in the most simple way, a linear trend (with intercept) onto this graph. Also, I would like to compute this trend only conditional on data before, say, 2006.
I've found some answers here, but they all include statsmodels
. First of all, these answers might be not up to date: pandas
improved, and now itself includes an OLS component. Second, statsmodels
appears to estimate an individual fixed-effect for each time period, instead of a linear trend. I suppose I could recalculate a running-quarter variable, but there most be a more comfortable way of doing this?
OLS Regression Results
==============================================================================
Dep. Variable: emplvl R-squared: 1.000
Model: OLS Adj. R-squared: nan
Method: Least Squares F-statistic: 0.000
Date: tor, 14 apr 2016 Prob (F-statistic): nan
Time: 17:17:43 Log-Likelihood: 929.85
No. Observations: 40 AIC: -1780.
Df Residuals: 0 BIC: -1712.
Df Model: 39
Covariance Type: nonrobust
============================================================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------------------------------------
Intercept 1.095e+04 inf 0 nan nan nan
date[T.Timestamp('2003-04-01 00:00:00')] 135.3333 inf 0 nan nan nan
date[T.Timestamp('2003-07-01 00:00:00')] 202.0000 inf 0 nan nan nan
date[T.Timestamp('2003-10-01 00:00:00')] 380.6667 inf 0 nan nan nan
date[T.Timestamp('2004-01-01 00:00:00')] 90.0000 inf 0 nan nan nan
date[T.Timestamp('2004-04-01 00:00:00')] 220.6667 inf 0 nan nan nan
How do I, in the simplest way possible, estimate this trend and add the predicted values as a column to my data frame?
Here's a quick example on how to do this using pandas.ols
:
import matplotlib.pyplot as plt
import pandas as pd
x = pd.Series(np.arange(50))
y = pd.Series(10 + (2 * x + np.random.randint(-5, + 5, 50)))
regression = pd.ols(y=y, x=x)
regression.summary
-------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <x> + <intercept>
Number of Observations: 50
Number of Degrees of Freedom: 2
R-squared: 0.9913
Adj R-squared: 0.9911
Rmse: 2.7625
F-stat (1, 48): 5465.1446, p-value: 0.0000
Degrees of Freedom: model 1, resid 48
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
x 2.0013 0.0271 73.93 0.0000 1.9483 2.0544
intercept 9.5271 0.7698 12.38 0.0000 8.0183 11.0358
---------------------------------End of Summary---------------------------------
trend = regression.predict(beta=regression.beta, x=x[20:]) # slicing to only use last 30 points
data = pd.DataFrame(index=x, data={'y': y, 'trend': trend})
data.plot() # add kwargs for title and other layout/design aspects
plt.show() # or plt.gcf().savefig(path)