I keep getting an input_shape error from the following code.
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
def _load_data(data):
"""
data should be pd.DataFrame()
"""
n_prev = 10
docX, docY = [], []
for i in range(len(data)-n_prev):
docX.append(data.iloc[i:i+n_prev].as_matrix())
docY.append(data.iloc[i+n_prev].as_matrix())
if not docX:
pass
else:
alsX = np.array(docX)
alsY = np.array(docY)
return alsX, alsY
X, y = _load_data(dframe)
poi = int(len(X) * .8)
X_train = X[:poi]
X_test = X[poi:]
y_train = y[:poi]
y_test = y[poi:]
input_dim = 3
All of the above runs smoothly. This is where it goes wrong.
in_out_neurons = 2
hidden_neurons = 300
model = Sequential()
#model.add(Masking(mask_value=0, input_shape=(input_dim,)))
model.add(LSTM(in_out_neurons, hidden_neurons, return_sequences=False, input_shape=(len(full_data),)))
model.add(Dense(hidden_neurons, in_out_neurons))
model.add(Activation("linear"))
model.compile(loss="mean_squared_error", optimizer="rmsprop")
model.fit(X_train, y_train, nb_epoch=10, validation_split=0.05)
It returns this error.
Exception: Invalid input shape - Layer expects input ndim=3, was provided with input shape (None, 10320)
When I check the website it says to specify a tuple "(e.g. (100,) for 100-dimensional inputs)."
That being said, my data set consists of one column with a length of 10320. I assume that that means that I should be putting (10320,)
in as the input_shape, but I get the error anyways. Does anyone have a solution?
My understanding is that both your input and your output are one dimensional vectors. The trick is to reshape them per Keras requirements:
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
import numpy as np
X= np.random.rand(1000)
y = 2*X
poi = int(len(X) * .8)
X_train = X[:poi]
y_train = y[:poi]
X_test = X[poi:]
y_test = y[poi:]
# you have to change your input shape (nb_samples, timesteps, input_dim)
X_train = X_train.reshape(len(X_train), 1, 1)
# and also the output shape (note that the output *shape* is 2 dimensional)
y_train = y_train.reshape(len(y_train), 1)
#in_out_neurons = 2
in_out_neurons = 1
hidden_neurons = 300
model = Sequential()
#model.add(Masking(mask_value=0, input_shape=(input_dim,)))
model.add(LSTM(hidden_neurons, return_sequences=False, batch_input_shape=X_train.shape))
# only specify the output dimension
model.add(Dense(in_out_neurons))
model.add(Activation("linear"))
model.compile(loss="mean_squared_error", optimizer="rmsprop")
model.fit(X_train, y_train, nb_epoch=10, validation_split=0.05)
# calculate test set MSE
preds = model.predict(X_test).reshape(len(y_test))
MSE = np.mean((preds-y_test)**2)
Here are the key points:
Hope this helps.