The problem is really strange, because that piece of worked pretty fine with other dataset.
The full code:
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.cross_validation import train_test_split
# # Split the Learning Set
X_fit, X_eval, y_fit, y_eval= train_test_split(
train, target, test_size=0.2, random_state=1
)
clf = xgb.XGBClassifier(missing=np.nan, max_depth=6,
n_estimators=5, learning_rate=0.15,
subsample=1, colsample_bytree=0.9, seed=1400)
# fitting
clf.fit(X_fit, y_fit, early_stopping_rounds=50, eval_metric="logloss", eval_set=[(X_eval, y_eval)])
#print y_pred
y_pred= clf.predict_proba(test)[:,1]
Last line causes the error below (full output provided):
Will train until validation_0 error hasn't decreased in 50 rounds.
[0] validation_0-logloss:0.554366
[1] validation_0-logloss:0.451454
[2] validation_0-logloss:0.372142
[3] validation_0-logloss:0.309450
[4] validation_0-logloss:0.259002
Traceback (most recent call last):
File "../src/script.py", line 57, in
y_pred= clf.predict_proba(test)[:,1]
File "/opt/conda/lib/python3.4/site-packages/xgboost-0.4-py3.4.egg/xgboost/sklearn.py", line 435, in predict_proba
test_dmatrix = DMatrix(data, missing=self.missing)
File "/opt/conda/lib/python3.4/site-packages/xgboost-0.4-py3.4.egg/xgboost/core.py", line 220, in __init__
feature_types)
File "/opt/conda/lib/python3.4/site-packages/xgboost-0.4-py3.4.egg/xgboost/core.py", line 147, in _maybe_pandas_data
raise ValueError('DataFrame.dtypes for data must be int, float or bool')
ValueError: DataFrame.dtypes for data must be int, float or bool
Exception ignored in: >
Traceback (most recent call last):
File "/opt/conda/lib/python3.4/site-packages/xgboost-0.4-py3.4.egg/xgboost/core.py", line 289, in __del__
_check_call(_LIB.XGDMatrixFree(self.handle))
AttributeError: 'DMatrix' object has no attribute 'handle'
What is wrong here? I have no idea how to fix that
UPD1: Acctually this is kaggle problem: https://www.kaggle.com/insaff/bnp-paribas-cardif-claims-management/xgboost
The problem here is related to the initial data: some of values are float or integer and some object. This is why we need to cast them:
from sklearn import preprocessing
for f in train.columns:
if train[f].dtype=='object':
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train[f].values))
train[f] = lbl.transform(list(train[f].values))
for f in test.columns:
if test[f].dtype=='object':
lbl = preprocessing.LabelEncoder()
lbl.fit(list(test[f].values))
test[f] = lbl.transform(list(test[f].values))
train.fillna((-999), inplace=True)
test.fillna((-999), inplace=True)
train=np.array(train)
test=np.array(test)
train = train.astype(float)
test = test.astype(float)