Given the following PySpark DataFrame
df = sqlContext.createDataFrame([('2015-01-15', 10),
('2015-02-15', 5)],
('date_col', 'days_col'))
How can the days column be subtracted from the date column? In this example, the resulting column should be ['2015-01-05', '2015-02-10']
.
I looked into pyspark.sql.functions.date_sub()
, but it requires a date column and a single day, i.e. date_sub(df['date_col'], 10)
. Ideally, I'd prefer to do date_sub(df['date_col'], df['days_col'])
.
I also tried creating a UDF:
from datetime import timedelta
def subtract_date(start_date, days_to_subtract):
return start_date - timedelta(days_to_subtract)
subtract_date_udf = udf(subtract_date, DateType())
df.withColumn('subtracted_dates', subtract_date_udf(df['date_col'], df['days_col'])
This technically works, but I've read that stepping between Spark and Python can cause performance issues for large datasets. I can stick with this solution for now (no need to prematurely optimize), but my gut says there's just got to be a way to do this simple thing without using a Python UDF.
Use expr
function (if you have dynamic values
from columns to substract):
>>> from pyspark.sql.functions import *
>>> df.withColumn('substracted_dates',expr("date_sub(date_col,days_col)"))
Use withColumn function(if you have literal values
to substract):
>>> df.withColumn('substracted_dates',date_sub('date_col',<int_literal_value>))