Taking np.average while ignoring NaN's?

ChristineB picture ChristineB · Mar 2, 2016 · Viewed 16.7k times · Source

I have a matrix with shape (64,17) correspond to time & latitude. I want to take a weighted latitude average, which I know np.average can do because, unlike np.nanmean, which I used to average the longitudes, weights can be used in the arguments. However, np.average doesn't ignore NaN like np.nanmean does, so my first 5 entries of each row are included in the latitude averaging and make the entire time series full of NaN.

Is there a way I can take a weighted average without the NaN's being included in the calculation?

file = Dataset("sst_aso_1951-2014latlon_seasavgs.nc")
sst = file.variables['sst']
lat = file.variables['lat']

sst_filt = np.asarray(sst)
missing_values_indices = sst_filt < -8000000   #missing values have value -infinity
sst_filt[missing_values_indices] = np.nan      #all missing values set to NaN

weights = np.cos(np.deg2rad(lat))
sst_zonalavg = np.nanmean(sst_filt, axis=2)
print sst_zonalavg[0,:]
sst_ts = np.average(sst_zonalavg, axis=1, weights=weights)
print sst_ts[:]

Output:

[ nan nan nan nan nan
 27.08499908 27.33333397 28.1457119 28.32899857 28.34454346
 28.27285767 28.18571472 28.10199928 28.10812378 28.03411865
 28.06411552 28.16529465]

[ nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
 nan nan nan nan]

Answer

Alex picture Alex · Mar 2, 2016

You can create a masked array like this:

data = np.array([[1,2,3], [4,5,np.NaN], [np.NaN,6,np.NaN], [0,0,0]])
masked_data = np.ma.masked_array(data, np.isnan(data))
# calculate your weighted average here instead
weights = [1, 1, 1]
average = np.ma.average(masked_data, axis=1, weights=weights)
# this gives you the result
result = average.filled(np.nan)
print(result)

This outputs:

[ 2.   4.5  6.   0. ]