How to stop spark streaming when the data source has run out

lostinplace picture lostinplace · Jan 29, 2016 · Viewed 11.4k times · Source

I have a spark streaming job that read from Kafka every 5 seconds, does some transformation on incoming data, and then writes to the file system.

This doesn't really need to be a streaming job, and really, I just want to run it once a day to drain the messages onto the file system. I'm not sure how to stop the job though.

If I pass a timeout to the streamingContext.awaitTermination, it doesn't stop the process, all it does is cause the process to spawn errors when it comes time to iterate on the stream (see error below)

What is the best way to accomplish what I'm trying to do

this is for Spark 1.6 on Python

EDIT:

thanks to @marios the solution was this:

ssc.start()
ssc.awaitTermination(10)
ssc.stop()

that runs the script for ten seconds before stopping.

simplified code:

conf = SparkConf().setAppName("Vehicle Data Consolidator").set('spark.files.overwrite','true')
sc = SparkContext(conf=conf)
ssc = StreamingContext(sc, 5)
stream = KafkaUtils.createStream(
    ssc,
    kafkaParams["zookeeper.connect"],
    "vehicle-data-importer",
    topicPartitions,
    kafkaParams)

stream.saveAsTextFiles('stream-output/kafka-vehicle-data')

ssc.start()
ssc.awaitTermination(10)

error:

16/01/29 15:05:44 INFO BlockManagerInfo: Added input-0-1454097944200 in memory on localhost:58960 (size: 3.0 MB, free: 48.1 MB)
16/01/29 15:05:44 WARN BlockManager: Block input-0-1454097944200 replicated to only 0 peer(s) instead of 1 peers
16/01/29 15:05:44 INFO BlockGenerator: Pushed block input-0-1454097944200
16/01/29 15:05:45 ERROR JobScheduler: Error generating jobs for time 1454097945000 ms
py4j.Py4JException: Cannot obtain a new communication channel
    at py4j.CallbackClient.sendCommand(CallbackClient.java:232)
    at py4j.reflection.PythonProxyHandler.invoke(PythonProxyHandler.java:111)
    at com.sun.proxy.$Proxy14.call(Unknown Source)
    at org.apache.spark.streaming.api.python.TransformFunction.callPythonTransformFunction(PythonDStream.scala:92)
    at org.apache.spark.streaming.api.python.TransformFunction.apply(PythonDStream.scala:78)
    at org.apache.spark.streaming.api.python.PythonTransformedDStream.compute(PythonDStream.scala:230)
    at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:352)
    at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:352)
    at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
    at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:351)
    at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:351)
    at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426)
    at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:346)
    at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:344)
    at scala.Option.orElse(Option.scala:257)
    at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:341)
    at org.apache.spark.streaming.dstream.ForEachDStream.generateJob(ForEachDStream.scala:47)
    at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:115)
    at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:114)
    at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
    at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
    at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
    at org.apache.spark.streaming.DStreamGraph.generateJobs(DStreamGraph.scala:114)
    at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:248)
    at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:246)
    at scala.util.Try$.apply(Try.scala:161)
    at org.apache.spark.streaming.scheduler.JobGenerator.generateJobs(JobGenerator.scala:246)
    at org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:181)
    at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:87)
    at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:86)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
16/01/29 15:05:45 INFO MemoryStore: Block input-0-1454097944800 stored as bytes in memory (estimated size 3.0 MB, free 466.1 MB)
16/01/29 15:05:45 INFO BlockManagerInfo: Added input-0-1454097944800 in memory on localhost:58960 (size: 3.0 MB, free: 45.1 MB)

Answer

marios picture marios · Jan 30, 2016

It seems that the right method to call is awaitTerminationOrTimeout(self, timeout).

I am not sure if it also stops the streaming context. So maybe you can call a ssc.stop() right after the timeout ends.

ssc.start()
ssc.awaitTerminationOrTimeout(10)
ssc.stop()

Note: Take a look here for a similar question.