What does tf.nn.embedding_lookup function do?

Poorya Pzm picture Poorya Pzm · Jan 19, 2016 · Viewed 69k times · Source
tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None)

I cannot understand the duty of this function. Is it like a lookup table? Which means to return the parameters corresponding to each id (in ids)?

For instance, in the skip-gram model if we use tf.nn.embedding_lookup(embeddings, train_inputs), then for each train_input it finds the correspond embedding?

Answer

Asher Stern picture Asher Stern · Jan 29, 2017

Yes, this function is hard to understand, until you get the point.

In its simplest form, it is similar to tf.gather. It returns the elements of params according to the indexes specified by ids.

For example (assuming you are inside tf.InteractiveSession())

params = tf.constant([10,20,30,40])
ids = tf.constant([0,1,2,3])
print tf.nn.embedding_lookup(params,ids).eval()

would return [10 20 30 40], because the first element (index 0) of params is 10, the second element of params (index 1) is 20, etc.

Similarly,

params = tf.constant([10,20,30,40])
ids = tf.constant([1,1,3])
print tf.nn.embedding_lookup(params,ids).eval()

would return [20 20 40].

But embedding_lookup is more than that. The params argument can be a list of tensors, rather than a single tensor.

params1 = tf.constant([1,2])
params2 = tf.constant([10,20])
ids = tf.constant([2,0,2,1,2,3])
result = tf.nn.embedding_lookup([params1, params2], ids)

In such a case, the indexes, specified in ids, correspond to elements of tensors according to a partition strategy, where the default partition strategy is 'mod'.

In the 'mod' strategy, index 0 corresponds to the first element of the first tensor in the list. Index 1 corresponds to the first element of the second tensor. Index 2 corresponds to the first element of the third tensor, and so on. Simply index i corresponds to the first element of the (i+1)th tensor , for all the indexes 0..(n-1), assuming params is a list of n tensors.

Now, index n cannot correspond to tensor n+1, because the list params contains only n tensors. So index n corresponds to the second element of the first tensor. Similarly, index n+1 corresponds to the second element of the second tensor, etc.

So, in the code

params1 = tf.constant([1,2])
params2 = tf.constant([10,20])
ids = tf.constant([2,0,2,1,2,3])
result = tf.nn.embedding_lookup([params1, params2], ids)

index 0 corresponds to the first element of the first tensor: 1

index 1 corresponds to the first element of the second tensor: 10

index 2 corresponds to the second element of the first tensor: 2

index 3 corresponds to the second element of the second tensor: 20

Thus, the result would be:

[ 2  1  2 10  2 20]