Python - IndentationError: unexpected indent

Mohammad Nurdin picture Mohammad Nurdin · Nov 27, 2015 · Viewed 7.5k times · Source

I don't know what mistakes I've done. Only tab, no space. I grab this code from this tutorial, http://cloudacademy.com/blog/google-prediction-api/. (I'm using PyCharm for development).

Error message

/Library/Frameworks/Python.framework/Versions/2.7/bin/python2.7 /Users/ZERO/GooglePredictionApi/google.py File "/Users/ZERO/GooglePredictionApi/google.py", line 72 api = get_prediction_api() ^ IndentationError: unexpected indent

Process finished with exit code 1

Sample code

import httplib2, argparse, os, sys, json
from oauth2client import tools, file, client
from googleapiclient import discovery
from googleapiclient.errors import HttpError

#Project and model configuration
project_id = '132567073760'
model_id = 'HAR-model'

#activity labels
labels = {
    '1': 'walking', '2': 'walking upstairs', 
    '3': 'walking downstairs', '4': 'sitting', 
    '5': 'standing', '6': 'laying'
}

def main():
    """ Simple logic: train and make prediction """
    try:
        make_prediction()
    except HttpError as e: 
        if e.resp.status == 404: #model does not exist
            print("Model does not exist yet.")
            train_model()
            make_prediction()
        else: #real error
            print(e)


def make_prediction():
    """ Use trained model to generate a new prediction """

    api = get_prediction_api() //error here

    print("Fetching model.")

    model = api.trainedmodels().get(project=project_id, id=model_id).execute()

    if model.get('trainingStatus') != 'DONE':
        print("Model is (still) training. \nPlease wait and run me again!") #no polling
        exit()

    print("Model is ready.")

    """
    #Optionally analyze model stats (big json!)
  analysis = api.trainedmodels().analyze(project=project_id, id=model_id).execute()
    print(analysis)
    exit()
    """

    #read new record from local file
    with open('record.csv') as f:
        record = f.readline().split(',') #csv

    #obtain new prediction
    prediction = api.trainedmodels().predict(project=project_id, id=model_id, body={
        'input': {
            'csvInstance': record
        },
    }).execute()

    #retrieve classified label and reliability measures for each class
    label = prediction.get('outputLabel')
    stats = prediction.get('outputMulti')

    #show results
    print("You are currently %s (class %s)." % (labels[label], label) ) 
    print(stats)


def train_model():
  """ Create new classification model """

    api = get_prediction_api()

    print("Creating new Model.")

    api.trainedmodels().insert(project=project_id, body={
        'id': model_id,
        'storageDataLocation': 'machine-learning-dataset/dataset.csv',
        'modelType': 'CLASSIFICATION'
    }).execute()


def get_prediction_api(service_account=True):
    scope = [
        'https://www.googleapis.com/auth/prediction',
        'https://www.googleapis.com/auth/devstorage.read_only'
    ]
    return get_api('prediction', scope, service_account)


def get_api(api, scope, service_account=True):
    """ Build API client based on oAuth2 authentication """
    STORAGE = file.Storage('oAuth2.json') #local storage of oAuth tokens
    credentials = STORAGE.get()
    if credentials is None or credentials.invalid: #check if new oAuth flow is needed
        if service_account: #server 2 server flow
            with open('service_account.json') as f:
                account = json.loads(f.read())
                email = account['client_email']
                key = account['private_key']
            credentials = client.SignedJwtAssertionCredentials(email, key, scope=scope)
            STORAGE.put(credentials)
        else: #normal oAuth2 flow
            CLIENT_SECRETS = os.path.join(os.path.dirname(__file__), 'client_secrets.json')
            FLOW = client.flow_from_clientsecrets(CLIENT_SECRETS, scope=scope)
            PARSER = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, parents=[tools.argparser])
            FLAGS = PARSER.parse_args(sys.argv[1:])
            credentials = tools.run_flow(FLOW, STORAGE, FLAGS)

  #wrap http with credentials
    http = credentials.authorize(httplib2.Http())
    return discovery.build(api, "v1.6", http=http)


if __name__ == '__main__':
    main()

Answer

alexcasalboni picture alexcasalboni · Dec 2, 2015

Here is Alex from CloudAcademy.

You can find the updated gist here: https://gist.github.com/alexcasalboni/cf11cc076ad70a445612

As others pointed out, the error is due to an inconsistent indentation. This is a general Python problem, not related to Google Prediction API or Machine Learning.

Whenever you find yourself in such a situation, I would recommend to simply follow PEP8 conventions and convert every hard tab into spaces. As this answer correctly suggested, you can fix the problem with tabnanny or by properly configuring your code editor.