I am able to add a new column in Panda by defining user function and then using apply. However, I want to do this using lambda; is there a way around?
For Example, df
has two columns a
and b
. I want to create a new column c
which is equal to the longest length between a
and b
.
Some thing like:
df['c'] = df.apply(lambda x, len(df['a']) if len(df['a']) > len(df['b']) or len(df['b']) )
One approach:
df = pd.DataFrame({'a':['dfg','f','fff','fgrf','fghj'], 'b' : ['sd','dfg','edr','df','fghjky']})
df['c'] = df.apply(lambda x: max([len(x) for x in [df['a'], df['b']]]))
print df
a b c
0 dfg sd NaN
1 f dfg NaN
2 fff edr NaN
3 fgrf df NaN
4 fghj fghjky NaN
You can use function map and select by function np.where
more info
print df
# a b
#0 aaa rrrr
#1 bb k
#2 ccc e
#condition if condition is True then len column a else column b
df['c'] = np.where(df['a'].map(len) > df['b'].map(len), df['a'].map(len), df['b'].map(len))
print df
# a b c
#0 aaa rrrr 4
#1 bb k 2
#2 ccc e 3
Next solution is with function apply with parameter axis=1
:
axis = 1 or ‘columns’: apply function to each row
df['c'] = df.apply(lambda x: max(len(x['a']), len(x['b'])), axis=1)