I have a Pandas DataFrame with a column called "AXLES", which can take an integer value between 3-12. I am trying to use Seaborn's countplot() option to achieve the following plot:
The following code gives me the plot below, with actual counts, but I could not find a way to convert them into frequencies. I can get the frequencies using df.AXLES.value_counts()/len(df.index)
but I am not sure about how to plug this information into Seaborn's countplot()
.
I also found a workaround for the annotations, but I am not sure if that is the best implementation.
Any help would be appreciated!
Thanks
plt.figure(figsize=(12,8))
ax = sns.countplot(x="AXLES", data=dfWIM, order=[3,4,5,6,7,8,9,10,11,12])
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
plt.ylabel('Frequency [%]')
for p in ax.patches:
ax.annotate('%{:.1f}'.format(p.get_height()), (p.get_x()+0.1, p.get_height()+50))
I got closer to what I need with the following code, using Pandas' bar plot, ditching Seaborn. Feels like I'm using so many workarounds, and there has to be an easier way to do it. The issues with this approach:
order
keyword in Pandas' bar plot function as Seaborn's countplot() has, so I cannot plot all categories from 3-12 as I did in the countplot(). I need to have them shown even if there is no data in that category.The secondary y-axis messes up the bars and the annotation for some reason (see the white gridlines drawn over the text and bars).
plt.figure(figsize=(12,8))
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
plt.ylabel('Frequency [%]')
ax = (dfWIM.AXLES.value_counts()/len(df)*100).sort_index().plot(kind="bar", rot=0)
ax.set_yticks(np.arange(0, 110, 10))
ax2 = ax.twinx()
ax2.set_yticks(np.arange(0, 110, 10)*len(df)/100)
for p in ax.patches:
ax.annotate('{:.2f}%'.format(p.get_height()), (p.get_x()+0.15, p.get_height()+1))
You can do this by making a twinx
axes for the frequencies. You can switch the two y axes around so the frequencies stay on the left and the counts on the right, but without having to recalculate the counts axis (here we use tick_left()
and tick_right()
to move the ticks and set_label_position
to move the axis labels
You can then set the ticks using the matplotlib.ticker
module, specifically ticker.MultipleLocator
and ticker.LinearLocator
.
As for your annotations, you can get the x and y locations for all 4 corners of the bar with patch.get_bbox().get_points()
. This, along with setting the horizontal and vertical alignment correctly, means you don't need to add any arbitrary offsets to the annotation location.
Finally, you need to turn the grid off for the twinned axis, to prevent grid lines showing up on top of the bars (ax2.grid(None)
)
Here is a working script:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import matplotlib.ticker as ticker
# Some random data
dfWIM = pd.DataFrame({'AXLES': np.random.normal(8, 2, 5000).astype(int)})
ncount = len(dfWIM)
plt.figure(figsize=(12,8))
ax = sns.countplot(x="AXLES", data=dfWIM, order=[3,4,5,6,7,8,9,10,11,12])
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
# Make twin axis
ax2=ax.twinx()
# Switch so count axis is on right, frequency on left
ax2.yaxis.tick_left()
ax.yaxis.tick_right()
# Also switch the labels over
ax.yaxis.set_label_position('right')
ax2.yaxis.set_label_position('left')
ax2.set_ylabel('Frequency [%]')
for p in ax.patches:
x=p.get_bbox().get_points()[:,0]
y=p.get_bbox().get_points()[1,1]
ax.annotate('{:.1f}%'.format(100.*y/ncount), (x.mean(), y),
ha='center', va='bottom') # set the alignment of the text
# Use a LinearLocator to ensure the correct number of ticks
ax.yaxis.set_major_locator(ticker.LinearLocator(11))
# Fix the frequency range to 0-100
ax2.set_ylim(0,100)
ax.set_ylim(0,ncount)
# And use a MultipleLocator to ensure a tick spacing of 10
ax2.yaxis.set_major_locator(ticker.MultipleLocator(10))
# Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars
ax2.grid(None)
plt.savefig('snscounter.pdf')