I'm using Seaborn in Python to create a Heatmap. I'm able to annotate the cells with the values passed in, but I'd like to add annotations that signify what the cell means. For example, instead of merely seeing 0.000000
, I'd like to see the corresponding label, for instance "Foo," or 0.000000 (Foo)
.
The Seaborn documentation for the heatmap function is a bit cryptic with the parameter that I believe is the key here:
annot_kws : dict of key, value mappings, optional
Keyword arguments for ax.text when annot is True.
I tried setting annot_kws
to a dictionary of the aliases to the values, i.e., {'Foo' : -0.231049060187, 'Bar' : 0.000000}
, etc., but I'm getting an AttributeError.
Here is my code (I've manually created the data array here for reproducability):
data = np.array([[0.000000,0.000000],[-0.231049,0.000000],[-0.231049,0.000000]])
axs = sns.heatmap(data, vmin=-0.231049, vmax=0, annot=True, fmt='f', linewidths=0.25)
Here is the (working) output when I don't use the annot_kws
parameter:
And here the stack trace for when I do include the annot_kws
param:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-57-38f91f1bb4b8> in <module>()
12
13
---> 14 axs = sns.heatmap(data, vmin=min(uv), vmax=max(uv), annot=True, annot_kws=kws, linewidths=0.25)
15 concepts
/opt/anaconda/2.3.0/lib/python2.7/site-packages/seaborn/matrix.pyc in heatmap(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cbar_kws, cbar_ax, square, ax, xticklabels, yticklabels, mask, **kwargs)
272 if square:
273 ax.set_aspect("equal")
--> 274 plotter.plot(ax, cbar_ax, kwargs)
275 return ax
276
/opt/anaconda/2.3.0/lib/python2.7/site-packages/seaborn/matrix.pyc in plot(self, ax, cax, kws)
170 # Annotate the cells with the formatted values
171 if self.annot:
--> 172 self._annotate_heatmap(ax, mesh)
173
174 # Possibly add a colorbar
/opt/anaconda/2.3.0/lib/python2.7/site-packages/seaborn/matrix.pyc in _annotate_heatmap(self, ax, mesh)
138 val = ("{:" + self.fmt + "}").format(val)
139 ax.text(x, y, val, color=text_color,
--> 140 ha="center", va="center", **self.annot_kws)
141
142 def plot(self, ax, cax, kws):
/opt/anaconda/2.3.0/lib/python2.7/site-packages/matplotlib/axes/_axes.pyc in text(self, x, y, s, fontdict, withdash, **kwargs)
590 if fontdict is not None:
591 t.update(fontdict)
--> 592 t.update(kwargs)
593 self.texts.append(t)
594 t._remove_method = lambda h: self.texts.remove(h)
/opt/anaconda/2.3.0/lib/python2.7/site-packages/matplotlib/artist.pyc in update(self, props)
755 func = getattr(self, 'set_' + k, None)
756 if func is None or not six.callable(func):
--> 757 raise AttributeError('Unknown property %s' % k)
758 func(v)
759 changed = True
AttributeError: Unknown property tokenized
Finally, kws
, the attribute I'm passing in the line in the stack trace, is the dictionary and it would look basically like this:
kws = {'Foo': -0.231049060187, 'Bar': 0.0}
Hope everything makes sense, and I'd appreciate any help anyone can give.
This feature has just been added in the recent version of Seaborn 0.7.1.
From Seaborn update history:
The annot parameter of heatmap() now accepts a rectangular dataset in addition to a boolean value. If a dataset is passed, its values will be used for the annotations, while the main dataset will be used for the heatmap cell colors
Here is an example
data = np.array([[0.000000,0.000000],[-0.231049,0.000000],[-0.231049,0.000000]])
labels = np.array([['A','B'],['C','D'],['E','F']])
fig, ax = plt.subplots()
ax = sns.heatmap(data, annot = labels, fmt = '')
Note, fmt = '' is necessary if you are using non-numeric labels, since the default value is fmt='.2g' which makes sense only for numeric values and would lead to an error for text labels.