Is it possible to append Series to rows of DataFrame without making a list first?

O.rka picture O.rka · Oct 13, 2015 · Viewed 105.1k times · Source

I have some data I'm trying to organize into a DataFrame in Pandas. I was trying to make each row a Series and append it to the DataFrame. I found a way to do it by appending the Series to an empty list and then converting the list of Series to a DataFrame

e.g. DF = DataFrame([series1,series2],columns=series1.index)

This list to DataFrame step seems to be excessive. I've checked out a few examples on here but none of the Series preserved the Index labels from the Series to use them as column labels.

My long way where columns are id_names and rows are type_names: enter image description here

Is it possible to append Series to rows of DataFrame without making a list first?

#!/usr/bin/python

DF = DataFrame()
for sample,data in D_sample_data.items():
    SR_row = pd.Series(data.D_key_value)
    DF.append(SR_row)
DF.head()

TypeError: Can only append a Series if ignore_index=True or if the Series has a name

Then I tried

DF = DataFrame()
for sample,data in D_sample_data.items():
    SR_row = pd.Series(data.D_key_value,name=sample)
    DF.append(SR_row)
DF.head()

Empty DataFrame

Tried Insert a row to pandas dataframe Still getting an empty dataframe :/

I am trying to get the Series to be the rows, where the index of the Series becomes the column labels of the DataFrame

Answer

Anand S Kumar picture Anand S Kumar · Oct 13, 2015

Maybe an easier way would be to add the pandas.Series into the pandas.DataFrame with ignore_index=True argument to DataFrame.append(). Example -

DF = DataFrame()
for sample,data in D_sample_data.items():
    SR_row = pd.Series(data.D_key_value)
    DF = DF.append(SR_row,ignore_index=True)

Demo -

In [1]: import pandas as pd

In [2]: df = pd.DataFrame([[1,2],[3,4]],columns=['A','B'])

In [3]: df
Out[3]:
   A  B
0  1  2
1  3  4

In [5]: s = pd.Series([5,6],index=['A','B'])

In [6]: s
Out[6]:
A    5
B    6
dtype: int64

In [36]: df.append(s,ignore_index=True)
Out[36]:
   A  B
0  1  2
1  3  4
2  5  6

Another issue in your code is that DataFrame.append() is not in-place, it returns the appended dataframe, you would need to assign it back to your original dataframe for it to work. Example -

DF = DF.append(SR_row,ignore_index=True)

To preserve the labels, you can use your solution to include name for the series along with assigning the appended DataFrame back to DF. Example -

DF = DataFrame()
for sample,data in D_sample_data.items():
    SR_row = pd.Series(data.D_key_value,name=sample)
    DF = DF.append(SR_row)
DF.head()