Im trying to implement ZCA whitening and found some articles to do it, but they are a bit confusing.. can someone shine a light for me?
Any tip or help is appreciated!
Here is the articles i read :
http://courses.media.mit.edu/2010fall/mas622j/whiten.pdf http://bbabenko.tumblr.com/post/86756017649/learning-low-level-vision-feautres-in-10-lines-of
I tried several things but most of them i didnt understand and i got locked at some step. Right now i have this as base to start again :
dtype = np.float32
data = np.loadtxt("../inputData/train.csv", dtype=dtype, delimiter=',', skiprows=1)
img = ((data[1,1:]).reshape((28,28)).astype('uint8')*255)
Here is a python function for generating the ZCA whitening matrix:
def zca_whitening_matrix(X):
"""
Function to compute ZCA whitening matrix (aka Mahalanobis whitening).
INPUT: X: [M x N] matrix.
Rows: Variables
Columns: Observations
OUTPUT: ZCAMatrix: [M x M] matrix
"""
# Covariance matrix [column-wise variables]: Sigma = (X-mu)' * (X-mu) / N
sigma = np.cov(X, rowvar=True) # [M x M]
# Singular Value Decomposition. X = U * np.diag(S) * V
U,S,V = np.linalg.svd(sigma)
# U: [M x M] eigenvectors of sigma.
# S: [M x 1] eigenvalues of sigma.
# V: [M x M] transpose of U
# Whitening constant: prevents division by zero
epsilon = 1e-5
# ZCA Whitening matrix: U * Lambda * U'
ZCAMatrix = np.dot(U, np.dot(np.diag(1.0/np.sqrt(S + epsilon)), U.T)) # [M x M]
return ZCAMatrix
And an example of the usage:
X = np.array([[0, 2, 2], [1, 1, 0], [2, 0, 1], [1, 3, 5], [10, 10, 10] ]) # Input: X [5 x 3] matrix
ZCAMatrix = zca_whitening_matrix(X) # get ZCAMatrix
ZCAMatrix # [5 x 5] matrix
xZCAMatrix = np.dot(ZCAMatrix, X) # project X onto the ZCAMatrix
xZCAMatrix # [5 x 3] matrix
Hope it helps!
Details for why Edgar Andrés Margffoy Tuay's answer is not correct: As pointed out in R.M's comment, Edgar Andrés Margffoy Tuay's ZCA whitening function contains a small, but crucial mistake: the np.diag(S)
should be removed. Numpy returns S
as a m x 1 vector and not a m x m matrix (as is common to other svd implementations, e.g. Matlab). Hence the ZCAMatrix
variable becomes a m x 1 vector and not a m x m matrix as it should be (when the input is m x n). (Also, the covariance matrix in Andfoy's answer is only valid if X is pre-centered, i.e mean 0).
Other references for ZCA: You can see the full answer, in Python, to the Stanford UFLDL ZCA Whitening exercise here.