I've got about 300k documents stored in a Postgres database that are tagged with topic categories (there are about 150 categories in total). I have another 150k documents that don't yet have categories. I'm trying to find the best way to programmaticly categorize them.
I've been exploring NLTK and its Naive Bayes Classifier. Seems like a good starting point (if you can suggest a better classification algorithm for this task, I'm all ears).
My problem is that I don't have enough RAM to train the NaiveBayesClassifier on all 150 categoies/300k documents at once (training on 5 categories used 8GB). Furthermore, accuracy of the classifier seems to drop as I train on more categories (90% accuracy with 2 categories, 81% with 5, 61% with 10).
Should I just train a classifier on 5 categories at a time, and run all 150k documents through the classifier to see if there are matches? It seems like this would work, except that there would be a lot of false positives where documents that don't really match any of the categories get shoe-horned into on by the classifier just because it's the best match available... Is there a way to have a "none of the above" option for the classifier just in case the document doesn't fit into any of the categories?
Here is my test class http://gist.github.com/451880
You should start by converting your documents into TF-log(1 + IDF) vectors: term frequencies are sparse so you should use python dict with term as keys and count as values and then divide by total count to get the global frequencies.
Another solution is to use the abs(hash(term)) for instance as positive integer keys. Then you an use scipy.sparse vectors which are more handy and more efficient to perform linear algebra operation than python dict.
Also build the 150 frequencies vectors by averaging the frequencies of all the labeled documents belonging to the same category. Then for new document to label, you can compute the cosine similarity between the document vector and each category vector and choose the most similar category as label for your document.
If this is not good enough, then you should try to train a logistic regression model using a L1 penalty as explained in this example of scikit-learn (this is a wrapper for liblinear as explained by @ephes). The vectors used to train your logistic regression model should be the previously introduced TD-log(1+IDF) vectors to get good performance (precision and recall). The scikit learn lib offers a sklearn.metrics module with routines to compute those score for a given model and given dataset.
For larger datasets: you should try the vowpal wabbit which is probably the fastest rabbit on earth for large scale document classification problems (but not easy to use python wrappers AFAIK).