I have a data frame like this:
value identifier
2007-01-01 0.781611 55
2007-01-01 0.766152 56
2007-01-01 0.766152 57
2007-02-01 0.705615 55
2007-02-01 0.032134 56
2007-02-01 0.032134 57
2008-01-01 0.026512 55
2008-01-01 0.993124 56
2008-01-01 0.993124 57
2008-02-01 0.226420 55
2008-02-01 0.033860 56
2008-02-01 0.033860 57
So I do a groupby per identifier:
df.groupby('identifier')
And now I want to generate subplots in a grid, one plot per group. I tried both
df.groupby('identifier').plot(subplots=True)
or
df.groupby('identifier').plot(subplots=False)
and
plt.subplots(3,3)
df.groupby('identifier').plot(subplots=True)
to no avail. How can I create the graphs?
Here's an automated layout with lots of groups (of random fake data) and playing around with grouped.get_group(key)
will show you how to do more elegant plots.
import pandas as pd
from numpy.random import randint
import matplotlib.pyplot as plt
df = pd.DataFrame(randint(0,10,(200,6)),columns=list('abcdef'))
grouped = df.groupby('a')
rowlength = grouped.ngroups/2 # fix up if odd number of groups
fig, axs = plt.subplots(figsize=(9,4),
nrows=2, ncols=rowlength, # fix as above
gridspec_kw=dict(hspace=0.4)) # Much control of gridspec
targets = zip(grouped.groups.keys(), axs.flatten())
for i, (key, ax) in enumerate(targets):
ax.plot(grouped.get_group(key))
ax.set_title('a=%d'%key)
ax.legend()
plt.show()