Panda dataframe conditional .mean() depending on values in certain column

tpapz picture tpapz · Apr 21, 2015 · Viewed 10.3k times · Source

I'm trying to create a new column which returns the mean of values from an existing column in the same df. However the mean should be computed based on a grouping in three other columns.

Out[184]: 
   YEAR daytype hourtype  scenario  option_value    
0  2015     SAT     of_h         0      0.134499       
1  2015     SUN     of_h         1     63.019250      
2  2015     WD      of_h         2     52.113516       
3  2015     WD      pk_h         3     43.126513       
4  2015     SAT     of_h         4     56.431392 

I basically would like to have a new column 'mean' which compute the mean of "option value", when "YEAR", "daytype", and "hourtype" are similar.

I tried the following approach but without success ...

In [185]: o2['premium']=o2.groupby(['YEAR', 'daytype', 'hourtype'])['option_cf'].mean()

TypeError: incompatible index of inserted column with frame index

Answer

Zero picture Zero · Apr 21, 2015

Here's one way to do it

In [19]: def cust_mean(grp):
   ....:     grp['mean'] = grp['option_value'].mean()
   ....:     return grp
   ....:

In [20]: o2.groupby(['YEAR', 'daytype', 'hourtype']).apply(cust_mean)
Out[20]:
   YEAR daytype hourtype  scenario  option_value       mean
0  2015     SAT     of_h         0      0.134499  28.282946
1  2015     SUN     of_h         1     63.019250  63.019250
2  2015      WD     of_h         2     52.113516  52.113516
3  2015      WD     pk_h         3     43.126513  43.126513
4  2015     SAT     of_h         4     56.431392  28.282946

So, what was going wrong with your attempt?

It returns an aggregate with different shape from the original dataframe.

In [21]: o2.groupby(['YEAR', 'daytype', 'hourtype'])['option_value'].mean()
Out[21]:
YEAR  daytype  hourtype
2015  SAT      of_h        28.282946
      SUN      of_h        63.019250
      WD       of_h        52.113516
               pk_h        43.126513
Name: option_value, dtype: float64

Or use transform

In [1461]: o2['premium'] = (o2.groupby(['YEAR', 'daytype', 'hourtype'])['option_value']
                              .transform('mean'))

In [1462]: o2
Out[1462]:
   YEAR daytype hourtype  scenario  option_value    premium
0  2015     SAT     of_h         0      0.134499  28.282946
1  2015     SUN     of_h         1     63.019250  63.019250
2  2015      WD     of_h         2     52.113516  52.113516
3  2015      WD     pk_h         3     43.126513  43.126513
4  2015     SAT     of_h         4     56.431392  28.282946