pandas - How to save only selected columns of a DataFrame to HDF5

Fabio Lamanna picture Fabio Lamanna · Jan 10, 2015 · Viewed 16.8k times · Source

I'm reading a csv sample file and store it on .h5 database. The .csv is structured as follows:

User_ID;Longitude;Latitude;Year;Month;String
267261661;-3.86580025;40.32170825;2013;12;hello world
171255468;-3.83879575;40.05035005;2013;12;hello world
343588169;-3.70759531;40.4055946;2014;2;hello world
908779052;-3.8356385;40.1249459;2013;8;hello world
289540518;-3.6723114;40.3801642;2013;11;hello world
635876313;-3.8323166;40.3379393;2012;10;hello world
175160914;-3.53687933;40.35101274;2013;12;hello world 
155029860;-3.68555076;40.47688417;2013;11;hello world

I've putting it on a .h5 store with the pandas to_hdf, selecting to pass to the .h5 only a couple of columns:

import pandas as pd

df = pd.read_csv(filename + '.csv', sep=';')

df.to_hdf('test.h5','key1',format='table',data_columns=['User_ID','Year'])

I've obtained different results in the columns stored in the .h5 file using HDFStore and read_hdf, in particular:

store = pd.HDFStore('test.h5')
>>> store
>>> <class 'pandas.io.pytables.HDFStore'>
File path: /test.h5
/key1            frame_table  (typ->appendable,nrows->8,ncols->6,indexers->[index],dc->[User_ID,Year])

which is what I expect (only the 'User_ID' and 'Year' columns stored in the database), althought the ncols->6 means that actually all the columns have been stored in the .h5 file.

If I try reading the file with pd.read_hdf:

hdf = pd.read_hdf('test.h5','key1')

and asking for the keys:

hdf.keys()
>>> Index([u'User_ID', u'Longitude', u'Latitude', u'Year', u'Month', u'String'], dtype='object')

which is not what I'm expected since all columns of the original .csv file are still in the .h5 database. How can I store only a selection of columns in the .h5 in order to reduce the size of the database?

Thanks for your help.

Answer

Paul H picture Paul H · Jan 10, 2015

just select out the columns as you write to the file.

cols_to_keep = ['User_ID', 'Year']
df.loc[:, cols_to_keep].to_hdf(...)