I have a dataframe in pandas where each column has different value range. For example:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
Any idea how I can normalize the columns of this dataframe where each value is between 0 and 1?
My desired output is:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
one easy way by using Pandas: (here I want to use mean normalization)
normalized_df=(df-df.mean())/df.std()
to use min-max normalization:
normalized_df=(df-df.min())/(df.max()-df.min())
Edit: To address some concerns, need to say that Pandas automatically applies colomn-wise function in the code above.