I have the following DataFrame:
In [1]:
import pandas as pd
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df
Out [1]:
a b c d
0 1 2 dd 5
1 2 3 ee 9
2 3 4 ff 1
I would like to add a column 'e'
which is the sum of column 'a'
, 'b'
and 'd'
.
Going across forums, I thought something like this would work:
df['e'] = df[['a','b','d']].map(sum)
But it didn't.
I would like to know the appropriate operation with the list of columns ['a','b','d']
and df
as inputs.
You can just sum
and set param axis=1
to sum the rows, this will ignore none numeric columns:
In [91]:
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df['e'] = df.sum(axis=1)
df
Out[91]:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
If you want to just sum specific columns then you can create a list of the columns and remove the ones you are not interested in:
In [98]:
col_list= list(df)
col_list.remove('d')
col_list
Out[98]:
['a', 'b', 'c']
In [99]:
df['e'] = df[col_list].sum(axis=1)
df
Out[99]:
a b c d e
0 1 2 dd 5 3
1 2 3 ee 9 5
2 3 4 ff 1 7