Trying to solve a simple non linear minimization problem with one variable.
from scipy.optimize import minimize
import math
alpha = 0.05
waiting = 50
mean_period = 50
neighborhood_size = 5
def my_func(w):
return -(2/(w+1) + alpha*math.floor(waiting/mean_period))*(1-(2/(w+1) + alpha*math.floor(waiting/mean_period)))**(neighborhood_size-1)
print minimize(my_func, mean_period, bounds=(2,200))
which gives me
ValueError: length of x0 != length of bounds
Do I input it wrong? How should I format it?
And if I remove the bounds, I get:
status: 2
success: False
njev: 19
nfev: 69
hess_inv: array([[1]])
fun: array([-0.04072531])
x: array([50])
message: 'Desired error not necessarily achieved due to precision loss.'
jac: array([-1386838.30676792])
The function looks like that and therefore I need the bounds to limit the solution in the local maximum that I am interested in.
It should be:
print minimize(my_func, mean_period, bounds=((2,200),))
status: 0
success: True
nfev: 57
fun: array([-0.08191999])
x: array([ 12.34003932])
message: 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
jac: array([ 2.17187379e-06])
nit: 4
For each parameter you have to provide a bound, therefore here we need to pass a tuple
, which contains only one tuple
(2,200)
, to minimize()
.