I am learning Pandas
package by replicating the outing from some of the R vignettes. Now I am using the dplyr
package from R as an example:
http://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
planes <- group_by(hflights_df, TailNum)
delay <- summarise(planes,
count = n(),
dist = mean(Distance, na.rm = TRUE))
delay <- filter(delay, count > 20, dist < 2000)
planes = hflights.groupby('TailNum')
planes['Distance'].agg({'count' : 'count',
'dist' : 'mean'})
How can I state explicitly in python that NA
needs to be skipped?
That's a trick question, since you don't do that. Pandas will automatically exclude NaN
numbers from aggregation functions. Consider my df
:
b c d e
a
2 2 6 1 3
2 4 8 NaN 7
2 4 4 6 3
3 5 NaN 2 6
4 NaN NaN 4 1
5 6 2 1 8
7 3 2 4 7
9 6 1 NaN 1
9 NaN NaN 9 3
9 3 4 6 1
The internal count()
function will ignore NaN
values, and so will mean()
. The only point where we get NaN
, is when the only value is NaN
. Then, we take the mean value of an empty set, which turns out to be NaN
:
In[335]: df.groupby('a').mean()
Out[333]:
b c d e
a
2 3.333333 6.0 3.5 4.333333
3 5.000000 NaN 2.0 6.000000
4 NaN NaN 4.0 1.000000
5 6.000000 2.0 1.0 8.000000
7 3.000000 2.0 4.0 7.000000
9 4.500000 2.5 7.5 1.666667
Aggregate functions work in the same way:
In[340]: df.groupby('a')['b'].agg({'foo': np.mean})
Out[338]:
foo
a
2 3.333333
3 5.000000
4 NaN
5 6.000000
7 3.000000
9 4.500000
Addendum: Notice how the standard dataframe.mean API will allow you to control inclusion of NaN
values, where the default is exclusion.