how to unstack (or pivot?) in pandas

codingknob picture codingknob · Jul 8, 2014 · Viewed 29.3k times · Source

I have a dataframe that looks like the following:

import pandas as pd
datelisttemp = pd.date_range('1/1/2014', periods=3, freq='D')
s = list(datelisttemp)*3
s.sort()
df = pd.DataFrame({'BORDER':['GERMANY','FRANCE','ITALY','GERMANY','FRANCE','ITALY','GERMANY','FRANCE','ITALY' ], 'HOUR1':[2 ,2 ,2 ,4 ,4 ,4 ,6 ,6, 6],'HOUR2':[3 ,3 ,3, 5 ,5 ,5, 7, 7, 7], 'HOUR3':[8 ,8 ,8, 12 ,12 ,12, 99, 99, 99]}, index=s)

This gives me:

Out[458]: df

             BORDER  HOUR1  HOUR2  HOUR3
2014-01-01  GERMANY      2      3      8
2014-01-01   FRANCE      2      3      8
2014-01-01    ITALY      2      3      8
2014-01-02  GERMANY      4      5     12
2014-01-02   FRANCE      4      5     12
2014-01-02    ITALY      4      5     12
2014-01-03  GERMANY      6      7     99
2014-01-03   FRANCE      6      7     99
2014-01-03    ITALY      6      7     99

I want the final dataframe to look something like:

             HOUR  GERMANY  FRANCE  ITALY
2014-01-01   1     2        2       2     
2014-01-01   2     3        3       3
2014-01-01   3     8        8       8 
2014-01-02   1     4        4       4
2014-01-02   2     5        5       5
2014-01-02   3    12       12      12
2014-01-03   1     6        6       6
2014-01-03   2     7        7       7
2014-01-03   3    99       99      99

I've done the following but I'm not quite there:

df['date_col'] = df.index

df2 = melt(df, id_vars=['date_col','BORDER'])  
#Can I keep the same index after melt or do I have to set an index like below?
df2.set_index(['date_col', 'variable'], inplace=True, drop=True)
df2 = df2.sort()

df

Out[465]: df2

                         BORDER   value
date_col   variable                 
2014-01-01 HOUR1           GERMANY   2
           HOUR1           FRANCE    2
           HOUR1           ITALY     2
           HOUR2           GERMANY   3
           HOUR2           FRANCE    3
           HOUR2           ITALY     3
           HOUR3           GERMANY   8
           HOUR3           FRANCE    8
           HOUR3           ITALY     8
2014-01-02 HOUR1           GERMANY   4
           HOUR1           FRANCE    4
           HOUR1           ITALY     4
           HOUR2           GERMANY   5
           HOUR2           FRANCE    5
           HOUR2           ITALY     5
           HOUR3           GERMANY  12
           HOUR3           FRANCE   12
           HOUR3           ITALY    12
2014-01-03 HOUR1           GERMANY   6
           HOUR1           FRANCE    6
           HOUR1           ITALY     6
           HOUR2           GERMANY   7
           HOUR2           FRANCE    7
           HOUR2           ITALY     7
           HOUR3           GERMANY  99
           HOUR3           FRANCE   99
           HOUR3           ITALY    99

I thought I could unstack df2 to get something that resembles my final dataframe but I get all sorts of errors. I have also tried to pivot this dataframe but can't quite get what I want.

Answer

unutbu picture unutbu · Jul 8, 2014

We want values (e.g. 'GERMANY') to become column names, and column names (e.g. 'HOUR1') to become values -- a swap of sorts.

The stack method turns column names into index values, and the unstack method turns index values into column names.

So by shifting the values into the index, we can use stack and unstack to perform the swap.

import pandas as pd

datelisttemp = pd.date_range('1/1/2014', periods=3, freq='D')
s = list(datelisttemp)*3
s.sort()
df = pd.DataFrame({'BORDER':['GERMANY','FRANCE','ITALY','GERMANY','FRANCE','ITALY','GERMANY','FRANCE','ITALY' ], 'HOUR1':[2 ,2 ,2 ,4 ,4 ,4 ,6 ,6, 6],'HOUR2':[3 ,3 ,3, 5 ,5 ,5, 7, 7, 7], 'HOUR3':[8 ,8 ,8, 12 ,12 ,12, 99, 99, 99]}, index=s)

df = df.set_index(['BORDER'], append=True)
df.columns.name = 'HOUR'
df = df.unstack('BORDER')
df = df.stack('HOUR')
df = df.reset_index('HOUR')
df['HOUR'] = df['HOUR'].str.replace('HOUR', '').astype('int')
print(df)

yields

BORDER      HOUR  FRANCE  GERMANY  ITALY
2014-01-01     1       2        2      2
2014-01-01     2       3        3      3
2014-01-01     3       8        8      8
2014-01-02     1       4        4      4
2014-01-02     2       5        5      5
2014-01-02     3      12       12     12
2014-01-03     1       6        6      6
2014-01-03     2       7        7      7
2014-01-03     3      99       99     99