What is the difference between join and merge in Pandas?

munk picture munk · Mar 27, 2014 · Viewed 146.4k times · Source

Suppose I have two DataFrames like so:

left = pd.DataFrame({'key1': ['foo', 'bar'], 'lval': [1, 2]})

right = pd.DataFrame({'key2': ['foo', 'bar'], 'rval': [4, 5]})

I want to merge them, so I try something like this:

pd.merge(left, right, left_on='key1', right_on='key2')

And I'm happy

    key1    lval    key2    rval
0   foo     1       foo     4
1   bar     2       bar     5

But I'm trying to use the join method, which I've been lead to believe is pretty similar.

left.join(right, on=['key1', 'key2'])

And I get this:

//anaconda/lib/python2.7/site-packages/pandas/tools/merge.pyc in _validate_specification(self)
    406             if self.right_index:
    407                 if not ((len(self.left_on) == self.right.index.nlevels)):
--> 408                     raise AssertionError()
    409                 self.right_on = [None] * n
    410         elif self.right_on is not None:

AssertionError: 

What am I missing?

Answer

Matthias Fripp picture Matthias Fripp · Jun 18, 2016

pandas.merge() is the underlying function used for all merge/join behavior.

DataFrames provide the pandas.DataFrame.merge() and pandas.DataFrame.join() methods as a convenient way to access the capabilities of pandas.merge(). For example, df1.merge(right=df2, ...) is equivalent to pandas.merge(left=df1, right=df2, ...).

These are the main differences between df.join() and df.merge():

  1. lookup on right table: df1.join(df2) always joins via the index of df2, but df1.merge(df2) can join to one or more columns of df2 (default) or to the index of df2 (with right_index=True).
  2. lookup on left table: by default, df1.join(df2) uses the index of df1 and df1.merge(df2) uses column(s) of df1. That can be overridden by specifying df1.join(df2, on=key_or_keys) or df1.merge(df2, left_index=True).
  3. left vs inner join: df1.join(df2) does a left join by default (keeps all rows of df1), but df.merge does an inner join by default (returns only matching rows of df1 and df2).

So, the generic approach is to use pandas.merge(df1, df2) or df1.merge(df2). But for a number of common situations (keeping all rows of df1 and joining to an index in df2), you can save some typing by using df1.join(df2) instead.

Some notes on these issues from the documentation at http://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging:

merge is a function in the pandas namespace, and it is also available as a DataFrame instance method, with the calling DataFrame being implicitly considered the left object in the join.

The related DataFrame.join method, uses merge internally for the index-on-index and index-on-column(s) joins, but joins on indexes by default rather than trying to join on common columns (the default behavior for merge). If you are joining on index, you may wish to use DataFrame.join to save yourself some typing.

...

These two function calls are completely equivalent:

left.join(right, on=key_or_keys)
pd.merge(left, right, left_on=key_or_keys, right_index=True, how='left', sort=False)