What is the correct way to pass a numpy 2d - array to a c function using ctypes ? My current approach so far (leads to a segfault):
C code :
void test(double **in_array, int N) {
int i, j;
for(i = 0; i<N; i++) {
for(j = 0; j<N; j++) {
printf("%e \t", in_array[i][j]);
}
printf("\n");
}
}
Python code:
from ctypes import *
import numpy.ctypeslib as npct
array_2d_double = npct.ndpointer(dtype=np.double,ndim=2, flags='CONTIGUOUS')
liblr = npct.load_library('libtest.so', './src')
liblr.test.restype = None
liblr.test.argtypes = [array_2d_double, c_int]
x = np.arange(100).reshape((10,10)).astype(np.double)
liblr.test(x, 10)
This is probably a late answer, but I finally got it working. All credit goes to Sturla Molden at this link.
The key is, note that double**
is an array of type np.uintp
. Therefore, we have
xpp = (x.ctypes.data + np.arange(x.shape[0]) * x.strides[0]).astype(np.uintp)
doublepp = np.ctypeslib.ndpointer(dtype=np.uintp)
And then use doublepp
as the type, pass xpp
in. See full code attached.
The C code:
// dummy.c
#include <stdlib.h>
__declspec(dllexport) void foobar(const int m, const int n, const
double **x, double **y)
{
size_t i, j;
for(i=0; i<m; i++)
for(j=0; j<n; j++)
y[i][j] = x[i][j];
}
The Python code:
# test.py
import numpy as np
from numpy.ctypeslib import ndpointer
import ctypes
_doublepp = ndpointer(dtype=np.uintp, ndim=1, flags='C')
_dll = ctypes.CDLL('dummy.dll')
_foobar = _dll.foobar
_foobar.argtypes = [ctypes.c_int, ctypes.c_int, _doublepp, _doublepp]
_foobar.restype = None
def foobar(x):
y = np.zeros_like(x)
xpp = (x.__array_interface__['data'][0]
+ np.arange(x.shape[0])*x.strides[0]).astype(np.uintp)
ypp = (y.__array_interface__['data'][0]
+ np.arange(y.shape[0])*y.strides[0]).astype(np.uintp)
m = ctypes.c_int(x.shape[0])
n = ctypes.c_int(x.shape[1])
_foobar(m, n, xpp, ypp)
return y
if __name__ == '__main__':
x = np.arange(9.).reshape((3, 3))
y = foobar(x)
Hope it helps,
Shawn