I am aware of statsmodels.tools.tools.ECDF but since the calculation of an empricial cumulative distribution function (ECDF) is pretty straight-forward and I want to minimise dependencies in my project, I want to code it manually.
In a given list()
/ np.array()
Pandas.Series
, the ECDF for each element can be calculated as given in Wikipedia:
I have the Pandas DataFrame ,dfser
, below and I want to get the ecdf of the values
column. My two one-liner solutions are given as well.
Is there a faster way to do this? Speed is important in my application.
# Note that in my case indices are unique identifiers so I cannot reset them.
import numpy as np
import pandas as pd
# all indices are unique, but there may be duplicate measurement values (that belong to different indices).
dfser = pd.DataFrame({'group':['a','b','b','a','d','c','e','e','c','a','b','d','d','c','d','e','e','a'],
'values':[2.01899E-06, 1.12186E-07, 8.97467E-07, 2.91257E-06, 1.93733E-05,
0.00017889, 0.000120963, 4.27643E-07, 3.33614E-07, 2.08352E-12,
1.39478E-05, 4.28255E-08, 9.7619E-06, 8.51787E-09, 1.28344E-09,
3.5063E-05, 0.01732035,2.08352E-12]},
index = [123, 532, 235, 645, 747, 856, 345, 245, 845, 248, 901, 712, 162, 126,
198,748, 127,395] )
# My 1st Solution - list comprehension
dfser['ecdf']=[sum( dfser['values'] <= x)/float(dfser['values'].size) for x in dfser['values']]
# My 2nd Solution - ranking
dfser['rank'] = dfser['values'].rank(ascending = 0)
dfser['ecdf_r']=(len(dfser)-dfser['rank']+1)/len(dfser)
dfser
group values ecdf rank ecdf_r
123 a 2.018990e-06 0.555556 9.0 0.555556
532 b 1.121860e-07 0.333333 13.0 0.333333
235 b 8.974670e-07 0.500000 10.0 0.500000
645 a 2.912570e-06 0.611111 8.0 0.611111
747 d 1.937330e-05 0.777778 5.0 0.777778
856 c 1.788900e-04 0.944444 2.0 0.944444
345 e 1.209630e-04 0.888889 3.0 0.888889
245 e 4.276430e-07 0.444444 11.0 0.444444
845 c 3.336140e-07 0.388889 12.0 0.388889
248 a 2.083520e-12 0.111111 17.5 0.083333
901 b 1.394780e-05 0.722222 6.0 0.722222
712 d 4.282550e-08 0.277778 14.0 0.277778
162 d 9.761900e-06 0.666667 7.0 0.666667
126 c 8.517870e-09 0.222222 15.0 0.222222
198 d 1.283440e-09 0.166667 16.0 0.166667
748 e 3.506300e-05 0.833333 4.0 0.833333
127 e 1.732035e-02 1.000000 1.0 1.000000
395 a 2.083520e-12 0.111111 17.5 0.083333
Since you are already using pandas
I think it will be silly not to use some of its features:
In [15]:
import numpy as np
from numpy import *
sq=ser.value_counts()
sq.sort_index().cumsum()*1./len(sq)
Out[15]:
2.083520e-12 0.058824
1.283440e-09 0.117647
8.517870e-09 0.176471
4.282550e-08 0.235294
1.121860e-07 0.294118
3.336140e-07 0.352941
4.276430e-07 0.411765
8.974670e-07 0.470588
2.018990e-06 0.529412
2.912570e-06 0.588235
9.761900e-06 0.647059
1.394780e-05 0.705882
1.937330e-05 0.764706
3.506300e-05 0.823529
1.209630e-04 0.882353
1.788900e-04 0.941176
1.732035e-02 1.000000
dtype: float64
And speed comparison
In [19]:
%timeit sq.sort_index().cumsum()*1./len(sq)
1000 loops, best of 3: 344 µs per loop
In [18]:
%timeit ser.value_counts().sort_index().cumsum()*1./len(ser.value_counts())
1000 loops, best of 3: 1.58 ms per loop
In [17]:
%timeit [sum( ser <= x)/float(len(ser)) for x in ser]
100 loops, best of 3: 3.31 ms per loop
If the values are all unique, the ser.value_counts()
is no longer needed. That part is slow (Fetching unique values). All you need in that case is just to sort ser
.
In [23]:
%timeit np.arange(1, ser.size+1)/float(ser.size)
10000 loops, best of 3: 11.6 µs per loop
The fastest version that I can think of is to use get vectorized:
In [35]:
np.sum(dfser['values'].values[...,newaxis]<=dfser['values'].values.reshape((1,-1)), axis=0)*1./dfser['values'].size
Out[35]:
array([ 0.55555556, 0.33333333, 0.5 , 0.61111111, 0.77777778,
0.94444444, 0.88888889, 0.44444444, 0.38888889, 0.11111111,
0.72222222, 0.27777778, 0.66666667, 0.22222222, 0.16666667,
0.83333333, 1. , 0.11111111])
Add let see:
In [37]:
%timeit dfser['ecdf']=[sum( dfser['values'] <= x)/float(dfser['values'].size) for x in dfser['values']]
100 loops, best of 3: 6 ms per loop
In [38]:
%%timeit
dfser['rank'] = dfser['values'].rank(ascending = 0)
dfser['ecdf_r']=(len(dfser)-dfser['rank']+1)/len(dfser)
1000 loops, best of 3: 827 µs per loop
In [39]:
%timeit np.sum(dfser['values'].values[...,newaxis]<=dfser['values'].values.reshape((1,-1)), axis=0)*1./dfser['values'].size
10000 loops, best of 3: 91.1 µs per loop